
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1965

An investigation of a multiple iteration rate
incremental data processor
Robert Allan Bruce
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bruce, Robert Allan, "An investigation of a multiple iteration rate incremental data processor " (1965). Retrospective Theses and
Dissertations. 3288.
https://lib.dr.iastate.edu/rtd/3288

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/3288?utm_source=lib.dr.iastate.edu%2Frtd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

This dissertation has been

microiilmed exactly as received 66-2979

BRUCE, Robert Allan, 1929-
AN INVESTIGATION OF A MULTIPLE ITERA­
TION RATE INCREMENTAL DATA PROCESSOR.

Iowa State University of Science and Technology
Ph.D., 1965
Engineering, electrical

University Microfilms. Inc.. Ann Arbor. Michigan

www.manaraa.com

AN INVESTIGATION OP A MULTIPLE ITERATION RATE

INCREMENTAL DATA PROCESSOR

by

Robert Allan Bruce

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY.

Major Subject: Electrical Engineering

Approved:

In Charge of Major Work

Head of Major Department

Dea^ of Gra^3uate College

Iowa State University
Of Science and Technology

Ames, Iowa

1965

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

PLEASE NOTE:
Figure pages are not original copy.

They tend to Ycurl". Filmed in the

best possible way.

University Microfilms, Inc.

www.manaraa.com

±±

TABLE OP CONTENTS

page

I. INTRODUCTION 1

A. Past Applications of Incremental Processors 1

B. Extension of Applications by Multiple-Rate
Processing and Minimal Memory 3

II. DESIRED INCREMENTAL PROCESSOR CHARACTERISTICS 7

A. Basic Computation and Input Accumulation 7

B. Minimization of Memory l4

C. Multiple-Rate Processing 24

III. IMPLEMENTATION OF DESIRED PROCESSOR CHARACTERISTICS 33

A. Basic Operation 33

B. Memory Addressor 4l

C. Timing Generator 43

D. Multiple-Rate Code Generation 46

E. Arithmetic Unit 46

?. Memory Input-Output 49

IV. SAMPLE PROBLEM SYNTHESIS 52

V. SAMPLE PROBLEM EXPERIMENTAL DATA - 57a

VI. CONCLUSIONS 68

VII. BIBLIOGRAPHY 70

VIII. ACKNOWLEDGEMENTS. 72

IX. APPENDIX 73

www.manaraa.com

1

I. INTRODUCTION

With the expansion of requirements for real-time physical

data accumulation and processing, and with the development

of reliable, precise and high-speed digital hardware, a

special-purpose digital processor which would be used onboard

moving vehicles, at remote data pick-up points or in conjunc­

tion with large-scale data processors is feasible and desir­

able .

Often, much of the physical data to be accumulated or

generated is analog in nature and the functional variation as

well as the computational processing desired can be defined by

differential equations for many applications. With this in

mind, the usage of the ..computational processing of a high-speed

digital differential analyzer (DDA) appears most applicable.

Furthermore, the control functions required in a DDA for

computation are very compatible with those required for a

wide variety of data accumulation. The inherent building block

form of the DDA also allows compatible design for each

application.

A. Past Applications of Incremental Processors

The digital differential analyzer evolved as an outgrowth

of the analog differential analyzer.

The first useful analog differential analyzer was developed

by V. Bush and A. H. Caldwell (l) and used electro-mechanical

www.manaraa.com

2

ball and disk integrators. Application of this type of

analyzer was primarily devoted to laboratory simulation.

Later development of the voltage operational amplifier

(2) made feasible the development of electronic analog compu­

ters, such as the Reeves REAC and Electronic Associates, Inc.

PACE. Such machines are also used for laboratory simulation

of control systems. The basic computer elements consisting of

integrators and amplifiers are used, however, in many control

systems to provide system compensation.

The first digital differential analyzer was developed by

Northrup Aircraft, Inc. in 1950 to realize greater accuracy

and reliability. This computer, designated MADDIDA (3),

utilized a magnetic drum for storage and a serial arithmetic

unit. This computer and others, such as the Computer Research

Corporation CRC 105 (4) and the Honeywell 256 - integrator DDA

(5), were used primarily for navigation equation solution.

The DDA has been incorporated with a general-purpose

computer to provide a total navigation, guidance and monitoring

computer for military airborne and missileborne application.

The Autonetics VERDAN (6) and Litton Industries C-9OO (7)

computers are typical of this type of combination computer.

The above DDA's used magnetic drum or disk storage and

a serial-arithmetic unit commonly shared with memory storage

blocks to Implement multiple integrator operation. This time­

sharing operation limits the iteration frequency to 400

www.manaraa.com

3

Iterations per second or below. This range of iteration rate

restricts the application of these computers.

Machines which exhibited a significant increase in

iteration rate were developed by Packard Bell Corporation in

the TRICE computer (8) and by Hazeltine Technical Development

Center in the SPEDAC computer (9). Each of these machines used

a separate arithmetic unit and storage in the form of a delay

line or set of flip-flop registers for each separate computing

module. The computing modules consisted of several types;

a digital Integrator, a constant multiplier, a variable multi­

plier, etc. This approach provides a significant increase in

iteration rates to as high as 1 megacycle. The associated

increase in hardware causes an accompanying increase in cost and'

causes reduction in reliability which again severely limits

application.

B. Extension of Applications by Multiple-Rate

Processing and Minimal Memory

Some of the applications of an incremental data processor

such as the DDA which appear feasible and desirable are itemized

below.

1. Real-time physical data accumulation and computation based

on solution of differential equations:

a. Synthesis of transfer functions for control systems

such as inertial navigators, celestial trackers,

adaptive autopilots and armament control.

www.manaraa.com

A

b. Collection and processing of data for recording or

transmission such as data pick-up and filtering,

squaring, correlating, etc. to reduce the amount of

data to be stored or transmitted.

c. Computational operations as required for navigation

such as dead reckoning, celestial triangle solution,

etc.

2. Synthesis of differential equations for simulation of a

physical problem:

a. Linear, integral or differential mathematical equation

solution.

b. Control system analysis.

c. Correlation and smoothing studies.

d. Faster than real-time computation for prediction or

decision making such as flight path or trajectory

prediction, orbit prediction, fuel monitoring, etc.

The characteristics desired in an incremental processor

for these applications are presented in the following text.

The processor should be easily programmable in terms of

the physical problem and this program should be easily modified

with little processor changes. The use of the DDA integrator

function is readily interpretable in terms of the differential

equations of the physical problem and the use of a stored

program will allow proper modification.

The processor memory should be non-volatile; i.e., immune

www.manaraa.com

cr

to loss of program and data in the event of power shutdown or

failure. This characteristic requires the use of one of

several possible magnetic storage devices: a magnetic drum,

magnetic disk, magnetic tape, a magnetic core array or a

thin magnetic film array. The magnetic core array or thin-

magnetic-film array are considered most practical to attain

high-speed, small-space requirements and high reliability

which are not inherent in the other magnetic storage devices.

The amount of electronic hardware necessary to drive and

sense the signals in a magnetic array is proportional to the

amount of storage required. A significant emphasis is then

placed on minimization of the amount of this storage in the

use of such an array..

In all incremental machines developed to date using a

time-shared arithmetic unit, a common iteration frequency has

been used for all integrators and this frequency has been

limited to from 50 ops to 400 cps by hardware limitations.

A wide variation of operating frequency ranges exist in

various portions of many control systems. Such is the case in

inertial systems, for example, where the gyro stabilization

loops and the accelerometer output processing function must

be sampled at a rate up to 1 kcps while the basic Schuler loops

and gyro-compassing functions need only be sampled at rates of

0.1 cps or less. This is similarly true for tracking systems

where both a fast loop and a slow outer loop are synthesized.

www.manaraa.com

r
V

A similar situation exists in data accumulation such as

in airborne flight-data recording where fuel monitoring need

only be sampled over fractions of seconds or less while

navigation-position data must be handled at a much faster rate.

The use of a common iteration rate for all processing

integrators, therefore, constrains some of the integrators to

be processed at a much higher rate than is required and,

alternately, restricts the iteration rate for others to a

rate which is unusable in many applications.

The use of multiple-iteration rates for sets of DDA

integrators would circumvent the above limitations and provide

a significant improvement in processor performance. An improve­

ment in the iteration rate by an order of magnitude or greater

above the basic rate for a small portion of the total number

of integrators is feasible. This would increase the iteration

rate for those integrators to within the range of 1 kcps to

20 kcps which would allow usage in carrier-frequency analog

systems or in audio-frequency data processing. This higher

rate could alternately be used effectively to improve the

computational precision in time-dependent equation solution

as a result of the associated reduction in time increment.

In summary, specific characteristics of an incremental

processor which would extend its useful application are a

basic DDA integrator functional operation, an easily determined

stored program, minimal storage in the form of a magnetic array

and multiple-iteration rates for sets of the integrators.

www.manaraa.com

t

II. DESIRED INCREMENTAL PROCESSOR CHARACTERISTICS

A. Basic Computation and Input Accumulation

Before the incremental processor characteristics are

studied, a discussion of the basic DDA integration process

is in order.

The integration of y(x), as shown in Figure 1, with

respect to x over the limits to is given in Equation 1.

z = y(x) dx (l)
^o

This integration can be approximated by Equation 2 for

increments of x equal to constant Ax.

m m X -X
z ~ 2 y. (x) Ax = Ax Z y^ (x) where — = Ax

i=l i=l ^
(2)

Similarly, y(x) can be approximated by Equation 3.

m
y(x) - Z (A y(x))^ + y^ (3)

i=l

The variables z and y can be adequately approximated by

proper choice of the incremental size or quantization of x

and y (i.e.. Ax and Ay). The increments. Ax and Ay, are

physically represented in the digital machine by one ternary

bit having possible values of +1, 0 or -1 and the summation

consists of normal binary addition.

In a physical problem, y will not exceed some finite

maximum, y . The sum z will not, therefore, change more than

www.manaraa.com

8

y(x)

A
M

X Ax
^x

m

Figure 1. Basic integration

du
dv
dw

dx->.
• • \

±

±u ±v ±w ^ ± ±u ±v ±w ^

>^z ='2~^(±u ±v ±w)dx

Figure 2. DDA integrator symbol

www.manaraa.com

9

y for any one of the 1th summations with Ax normalized to

± 1 or 0 as above. With y physically limited to a value

less than n bits in length and with Ax normalized to 1, the

summation of y„^^ and z can be performed by adding y to only

the lowest n bits of z and by applying the nth carry bit to

the (n+l)th bit of z. By outputting the carry bit to the

(n+l)th bit at each iteration and retaining the remaining

lowest n bits, referred to as the remainder, r^, for summation

with y at the next iteration, a quantization of z can be

effected. That is, accumulation of the (n+l)th bit output

at each iteration will yield a value proportional to z as in

Equation 4 and truncated at the nth bit.

w = 2̂ z where w = S y.(x) Ax truncated (4)
i ^

z = 2~^w = Z 2"^y^. Ax truncated (5)
i

The accumulation of the (n+l)th bit of z can be considered

to be the accumulation of an increment of z, Az. The increment

of z can then be represented as in Equation 6.

Az = 2"^yAx or dz ~ 2"^ydx (6)

The Incremental output Az can then be stored and applied

as either a dependent-variable or independent-variable input

to any other Integrator, and, in fact, as an input to the

present integrator at the next iteration time.

Each integrator is then processed sequentially in one

iteration period.

www.manaraa.com

10

The variables x, j, and z discussed thus far have been

considered digital variables represented by a set of binary

bits normally called a "word". The conversion from or to

analog variables can be performed by the use of a proportion­

ality constant, which, in a given equipment, is determined

by the specific operation of the analog-to-digital converters

or digital-to-analog converters. This is represented as in

Equation 7.

Xg^ where x^ = digital variable (7)

Greater versatility in use of the integration process is

achieved by performing accumulation of several incremental

inputs (i.e., performing an intermediate algebraic summation)

into a given integrator as in Equation 8.

The symbolic representation for each integrator adopted

by the author is shown in Figure 2.

The basic digital operations required are listed below.

1) Extract from memory Au, Av, Aw from Az storage

2) Sum Au, Av, Aw to form Ay total = Ay^

3) Extract y^_^ and add to Ay^ to form y^

4) Store y^ into memory

or
= analog variable

= proportionality constant with

units of pulses per unit

analog variable

Ay = ± Au ± Av i Aw ± (8)

www.manaraa.com

I 11
I

^ 5) Multiply "by Ax to form y^Ax

6) Extract r^_^ and add to y^Ax to form r^^ and Az

7) Store r^^ and Az into memory

These operations are shown diagrammatically in Figure 3.

Two forms of external input conversion and/or accumulation

which utilize the basic integrator operations are shown in

Figures 4 and 5.

The first form consists of: a digital-to-analog voltage

conversion of the updated variable, y^; comparison of this

resultant voltage with the input voltage, and

amplification and pulse shaping of the resultant difference

to provide an incremental output. This is shown in Figure 4.

The second form of input accumulation is utilized to

generate the increment of a digital input, u, which is avail­

able as one word. The updated variable, y^, is digitally

compared bit-by-bit with the input, u, to determine a positive

or negative difference. This difference then provides the

incremental output. This form is shown in Figure 5-

In each of the above forms of input accumulation, the

increment accumulation is identical with that used in an

integrator performing internal computations. This similarity

allows use of a set of integrators for either computation

or sequential input sampling and conversion or combinations

of both.

www.manaraa.com

12

Au
Av

n-1

Ax
Memory

Az

Multi­
ply

Figure 3. Basic arithmetic operations

www.manaraa.com

/y= AZn_i-:

Memory <(

k

y n-1

n

Az^-C

'.Digital-to-
; Analog

Yn I
rHVoltage
I Converter

V input

; Analog . Î

Voltage

! Comparator

Amplifier and

Pulse Shaping'

Figure 4. Voltage converter

Memory ! y
n-1

1 ^n

y^ i Ditigal

Comparator u

Figure 5. Input accumulator

www.manaraa.com

B. Minimization of Memory

In reviewing the computational processing presented in

section II. A memory space must be available for data storage

of three digital variables for each integrator; i.e., variables

Lz, y and r. The variable Az requires 2 bits of data to

specify the one ternary bit of incremental data. The variables

y and r require the same number of at least n bits and n will

vary for each specific integrator.

To more thoroughly understand the range of n desired,

several commonly used forms of integrator connections are

presented in Figures 6, 7, 8 and 9.

Additionally, the relationship between n binary-bit

accuracy and m decimal-digit accuracy is indicated in

Equation 9.

n = logg 2" = logg = logg 10 log^o lo"^ = 3.32m (9)

For example, 6 digit accuracy requires 20 bit accuracy and 8

digit accuracy requires 27 bit accuracy.

The accuracy of sine-cosine generation, constant multi­

plication, variable multiplication and time integration is

dependent on the usage of the incremental processor. For

laboratory synthesis of sets of differential equations entirely

within the processor, 4 to 8 digit (l4 to 27 bits) accuracy

may be required. However, in real-time processing of data,

analog-to-digital or digital-to-analog conversion of the data-

limit the accuracy to the order of 3 to 4 digits (lO to l4

www.manaraa.com

13

dz = (u+v-z) 2-"k^(Jt

For -Il « (u+v-z) 2""kj,

U + V ~ z
or d(u + v) ~ dz
or du + dv ~ dz

Figure 6. Summer

u+v-z

2^de

A cos 6

2^ 2 ̂ A cos 0 d0

= d(A sin 9)

dz = -2^ 2- ^ A sin 0

= d(A cos 0)

(A < 2̂)

Figure 7. Sine-cosine generator

www.manaraa.com

-, /-J.O

dx

n)->. dz = 2 ̂ a dx = d(2""a x) -n.

(a < 2*)

Figure 8. Constant multiplier

du —a- dz=2 vdu

dv

z= 2 vdu+2 udv

= d(2~^uv)

Summer

Figure 9- Variable multiplier

www.manaraa.com

17

bits). For the summer, n need only be large enough to allow

storage of 2^-1 bits where n is typically 3 or 4.

Typical values for n and an expected average for n are

given in Table 1.

Table 1. Typical integrator bit lengths

Integrator function Bit length
n

Summer 3
Sine-cosine generator 10 to 14 'V 12
Constant multiplier 10 to 14 - 12
Variable multiplier 10 to 14 ~ 12
Time integrator 10 to 14 ~ 12
Total " 51

Average n = ~ 10

With these expected conditions of a possible maximum n of

.27 bits and an average n of 10 bits, variable-bit-length

storage is necessary for the r and y data in order to minimize

the memory requirements. An additional 5 bits of memory are

required, however, for each integrator to uniquely specify

n between 1 and 28 bits.

In addition to the Az, r, y and n size data, instruction

data must be stored to specify the inputs to each integrator.

This data must specify the type of input (dx, dt, +dy, -dy)

and the location of the az data to be applied as the input.

The number of inputs for various Integrator functions

are given in Table 2.

www.manaraa.com

18

Table 2. Number of inputs per integrator function

Integrator function Number of inputs

bummer
Sine-cosine generator Integ

Integ
Constant multiplier
Variable multiplier Integ

Time integrator
Low pass filter

4
2
2
1
2
2
2
3
_1
19

Average number of inputs = •— ~ 2

A condition exists, therefore, where the maximum number

of inputs is 4 or 5 for the summing function, for example,

and the average number of inputs is 2. Memory reduction can

then be accomplished by establishing control or instruction

to accumulate a variable number of inputs. An additional 3

bits of memory are required per integrator to specify the

number of inputs if up to 7 inputs are provided for.

Each integrator input .can then be specified with a mini­

mum of 2 bits to identify the type of input and logg N bits

to uniquely identify the integrator output (AZ) to be used as

the input where N is the nearest power of 2 equal to or

greater than the total number of integrators.

By use of variable length storage for n, a variable

number of inputs and a binary coded specification for each

input, a minimum amount of memory per integrator is achieved.

The number of bits of storage per integrator for specific data

www.manaraa.com

19

Is as follows: 3 bits for specifying the number of inputs;

5 bits for specifying the r, y computation bit length; 2n bits

of r, y data; 2 bits of Az store; 2m bits to define type of

input for m inputs and m logg N bits to specify the input to

be used. The total number of bits of memory minimum,

per integrator is given by

^mln = 10+2n+m(2+loS2 N) (lO)

For the expected average values of n=10 and m=2, is given by

®mln = 3t + 2 logg N (11)

For comparative purposes, the three existing methods of

data storage used in DDA synthesis will be discussed along

with the memory requirement for each.

The first method utilizes a magnetic drum for storage,

such as in the Northrup Aircraft, Inc. Maddida computer (3),

Autonetics Verdan computer (6) and Minneapolis-Honeywell 256

Integrator DDA (5), where the data is stored in several tracks

or channels on the drum as indicated in Figure 10. The number

of bits per integrator for specific data is as follows: 2n̂ ^̂

bits of r, y data where n is the maximum allowable Integra-iTia-X

tor bit length; 2 bits of Az store; 2m bits to specify the

type of input where m is the maximum number of inputs and

m max logg N bits to specify the input to be used. The corres­

ponding number of total bits of memory for drum storage per

integrator, is given by

%) = 2 + 2"max + %ax N) (12)

For m =5 and n = 24, the total drum storage per max max ' o ^

www.manaraa.com

20

rC-n reserved ! max
Channel 1 r data !-<-n, used —>-!

2 y data I i

->-<-n reserved , max ,
r<ng used —>4

-7>-

3
4

L _Int ̂ #1 _ I L _ Int • £2 1 [Int. #3
jlnout data for jinput data for :
int. # 2 Int. # 3

inputs of: of:

2 bits-input type I 2 bits-input type
logg N bits - j logg N bits -
input = Az input = Az

where n = r, y data max bit length
ITLA.X

Figure 10,

N 2 total number of integrators

Magnetic-drum data format

K bits

Delay Line 1 r data k-n, used
2 y data

3'I Input
4 j Data

Int ._JaL

\ L

5 Az
data

k bit pairs
Each specifying:
Type of input to
Int. #2 = Oj Ax,
±Ay from Az

N bit pairs

<- K bits

ng used

_ Int_. .;#2 J _ _

where K = n
max

= N

Figure 11. Delay-line data format

\—I
k bit pairs
Each specifying:
Type .of-input to
Int. #3 = o,
± Ay from Az

"max Î "

"max ; N

/

www.manaraa.com

21

integrator is given as

= 60 + 5 logg N ' (13)

The second method utilizes recirculating delay lines, such

as in the Computer Control Co., Inc., SPEC computer (lO),

in a format similar to that used in drum storage. The data is

distributed down six delay lines at any instant of time as

indicated in Figure 11. The total number of bits of memory

per integrator for delay-line storage, is given in

Equation 14 where the maximum integrator bit length is n

and the maximum number of Integrators Is 2̂ .

Bdl -fz + "max for > N (14)
I 2 + 4 N for n < N
^ max -

For = 24, the total delay line storage per integrator is

given by

=

t;
D̂L for 24 > N (15)

2 + 4N for 24 5 N

The third method consists of programming a general-

purpose computer to synthesize the DDA integrator function.

A typical program to perform this function is given in

Table 3> tabulated below.

Table 3. CP program of DDA Integrator function

Instruction Memory requirement

1) Clear and add Ay^

2) Add Ayg

1 word - Instruction

1 word - Instruction

www.manaraa.com

Table 3 (Continued)

22

Memory requirement

1 word -
1 word -

1 word -

1 word -

1 word -
1 word -

instruction
y^ data

instruction

instruction

instruction
r^ data

1 word - instruction

1 word -
1 word -

instruction
Az data

10 words

Instruction

3) Add y.
n-l

4) Store

5) Multiply

6) Add

"n

Ax

^n-1

7) Store n

8) Sense overflow
and store Az

Total

For a word length of 24 bits, the total number of bits of

memory for GP synthesis per integrator, is 240 bits.

The measure of reduction of memory by use of the minimal

memory DDA technique is given by the ratios of and

Bgp to B^^^ as in Equations l6, 17 and 18 respectively.

®MD 60+5 logg N

34+2 logg N B mm

B DL
B min

M
3 4 + 2 l o g g N

S 2 + 4N

B

3 4 + 2 logg N

for 24 > N

for 24 < N

(16)

(17)

GP 240
B min 3 4 + 2 logg N

(18)

These results are graphed in Figure 12 as a function of N.

www.manaraa.com

23

®DL/®min

lâiiiiliuiliiiiuuiiuiii

1000

N

Figure 12. Storage requirement ratios

www.manaraa.com

o/l

C. Multiple-Rate Processing

The timing sequence to perform the DDA Integrator dltlal

operations presented In section II. A Is Illustrated in

Figure 13.

The timing sequence presented in Figure 13 is repeated

for each iteration period.

The functions performed during each specific memory cycle

in Figure 13 are given in Table 4.

Table 4. Integrator processing cycle functions

Memory cycle Function performed

L Extract n value and number of
Inputs .

I, Extract Az number as 1st input
and 1st input type

ZE, Extract Ist input Az value
Add to cleared Ay accumulator if
Ay input
Temporarily store if Ax input

Ig Extract Az number as 2nd input
and 2nd input type

ZEg Extract 2nd input Az value
Add to Ay accumulator if Ay input
Temporarily store if Ax input

D D Extract r, y (nth lowest bit
to sign bit)
Add y^ to Ay lowest bit to
update y^
Multiply resultant y by Ax
Add r to resultant y^Ax to
update r
Insert undated y^ into memory
Insert undated r^ into memory

www.manaraa.com

1 Integrator iteration processing cycle
1 Period of memory read-write cycle

-é-M»

i i 1 ̂ 1 1 1 1 1 1 1—i>—
L ZE^ Ig ZEg D„

K- y. computation

Figure 13. Control timing sequence

j_^ ..Interleaving sub-interval .

1 integrator iteration procès sing cycle

-j i 1 i 1 1 i 1 1—
. ̂ Ix 4̂x 4̂x 2̂x 4̂x 4̂x 2̂x Îx 4̂x

where I^^ = 1 of the "ix" integrators

= 1 of the "2x" integrators

= 1 of the "4x" integrators

Figure 14. Interleaving sequence

www.manaraa.com

Table 4 (Continued)

Memory cycle Function performed

Repeat above for n-lst bit
through sign bit,
Sense overflow, Az, and
temporarily store at time

ZI Insert temporarily stored Az
output into memory

Each integrator in most existing incremental computers

is processed sequentially once per iteration period and the

input data for each integrator is accumulated during the time

that the prior integrator r and y data are being processed.

This time overlapping of data for two different integrators

cannot be performed when multiple iteration rates are used,

however, and the. input and computational data must be stored

as an addressable closed set of data in memory.

- In order to perform multiple iteration rates with

different sets of integrators, the interleaving of process

cycles for the various integrators must be considered. This

interleaving as Illustrated in Figure l4 for the case of the

fundamental iteration rate (ix) and multiples of 2 (2x) and

4 times (4x) the fundamental rate with the same number of

integrators at each rate. Each of the set of Ix, 2x and 4x

integrators would be processed sequentially to complete the

fundamental iteration period.

www.manaraa.com

27

The sample sequence In Figure l4 Indicates the need for

random memory access to any integrator block of data and

clarifies the need for a closed set of data per integrator.

The memory addressing for the interleaving sequence then

consists of random access to the starting address of each

data block and normal sequential addressing within the data

block.

The addressing then uses normal sequential addressing

within the data block, sequential'processing of the set of

integrators of a given iteration rate and switching between

the sets of integrators of the different iteration rates

according to the interleaving sequence. In the process of

address transferring between the sets, the last address

for each of the iteration sets not in process is temporarily

stored and returned to upon continuing the processing of a

given set. This temporary storage and transfer requires

added control timing within the integrator timing sequence

as indicated in Figure 15.

The iteration periods for the various rates should now

be considered to determine the proper interleaving sequence.

For the case where the number of integrators operating at

each of the various rates is different, the fundamental

recurrence period of processing will be a multiple of the

average Ix period. This multiple, k^, can be determined by
0

considering the total number of integrator processor cycles

www.manaraa.com

ax integrator

D. ZI AI

"bx" integrator

-=>-t
AE L

where AI = temporary store of last "ax"
set address

AE = Extract from temporary storage
last "bx" set address

Figure 15. Control transfer sequence

www.manaraa.com

in the fundamental recurrence period, for 3 iteration

rates as given in Equation 19. The terms k^dp and d^ep must

be multiples of

Tf = (p + dp + ep) T^ = (k^ p + dp + ep) (19)

where p = total number of "ix" integrators

d = total number of "ax" integrators
in each interleaving sub-interval

e = total number of "bx" integrators
in each interleaving sub-interval

T^= average integrator cycle period

the total number of ax integrators, q, and bx integrators, s,

respectively as indicated in Equations 20 and 21.

k^dp = kgq (20)

where k^, kg and kg are lowest integers

k-j^ep = kgS (21)

The resultant average iteration periods for Ix, ax and

bx iteration periods are T, , T and T, as given in
^̂ av &*av Ĝ av

Equations 22, 23 and 24 respectively. '

Tlx = ̂ = (1 + a + e) pT (22)

Xv =-is Xv '

The above indicate that integral multiples of iteration

rates by use of the interleaving technique are possible only

for integral ratios of q and s to p. Non-integral multiples

and a T, dependence on p, d, e and q can be accounted for
âv

www.manaraa.com

30

in actual computation, however, by use of a constant-multiplier

interconnection operating on the time variable and by precise

measurement of the Ix iteration period.

The iteration periods will vary around the average values

due to variation in due to relative values of p, q and s

and due to the specific sequence within the interleaving

sub-interval. The variation due to T^ and the relative values

of p, q and s will tend to be small due to averaging over

several process cycles. The specific sequence within the

interleaving sub-interval will be the dominant cause of instan­

taneous variations in iteration periods and should be con­

sidered in further detail.

An adequate upper bound on the variation can be achieved

by use of the following technique to determine the inter­

leaving sequence.

Step 1.

Step 2.

Step 3.

The maximum relative variation, v^^ and v^^, for the ax

Given p, q, s and an approximate value for T^

Tlx, T^^, T^x required, determine d and e from

Equations 22, 23 and 24 to satisfy the iteration

period requirement.

Determine k from Equation 25 where k is an

integer.

_e ^ ^ e
d ̂ - 1 < k < -J (25)

Specify the sequence from the above determined

d, e and k as illustrated in Figure l6.

www.manaraa.com

interleaving sub-interval

(-<— Sub-sequence

k "bx" integrators

-h - 1 -

<-Repeat sub-sequences for ->--<-e-kd"bx" ->-|
integrators

bx 'bx ax

a total of d sub-sequences

^bx ax bx bx

Figure l6. Interleaving sub-sequence

Interleaving sub-interval — ->

^Ix ^lOx ^lOx ̂ 4x ^lOx ^lOx ̂ 4x ^lOx ^lOx ̂ 4x ^lOx ^lOx ̂ 4x ^lOx ^lOx

Figure 17. Ix, 4x and lOx interleaving sequence

-v1

www.manaraa.com

.S^a

and bx Iteration periods using the above technique are given

in Equations 26 and 27 respectively. Less than 20fo maximum

T ^ ax max variation eTc e
""ax ? T— = dT— = (1 + d + e)q (2^)

av av

T , bx max variation Tc e /orrN
""bx - T— - T^.- (1 + d t e)s (27)

av av

variations is achieved for the number of ax and bx integrators

(q and s) equal to or greater than 5. In performing computa­

tions, the average iteration period must be known precisely

but a 20^ variation over several periods will have a secondary

effect on computational accuracy.

An example of the interleaving sequence using the above

technique for d = 4 and e = 10 is illustrated in Figure 17.

Additionally, the iteration rates for 4 combinations of

p, q, s, d and e are given in Table 5- A value of T^ =

9 li sec. was used in the computations which is an expected

value if a thin-magnetic-film memory were used.

www.manaraa.com

3

Table 5- Iteration rate combinations

Total
no. of
integ.
p+q+s

No. of
Ix

integ.
P

No. of
ax

integ.
q

No , of
bx

integ.
s

^Ix fax fbx

d=4
e=10 50 30 12 8 246.7

ops
2.467
Iccps

9.252
kcps

100 70 20 10 105.7
cps

1.480
kcps

7.402
kcps

200 140 40 20 52.9
cps

740
cps

3.701
kcps

d=0
e=0 250 250 - - 444.4

cps
- -

www.manaraa.com

33

III. IMPLEMENTATION OP DESIRED PROCESSOR CHARACTERISTICS

A. Basic Operation

The specific characteristics of the incremental processor

to be implemented were chosen based on the sample problem to

be performed.

The sample problem was chosen to illustrate the minimal

memory and multiple-iteration-rate techniques. The three

speeds of Ix, 4x and lOx were chosen to illustrate the

multiple rates. A problem requiring 5 to 8 integrators oper­

ating at each iteration rate was assumed and it was decided to

run the same problem at each iteration rate.

The specific problem chosen consists of generating sine

and cosine functions.

Two programs were chosen to be run to illustrate the

effect of the multiple-iteration rates.

The first program consists of cycling sine and cosine for

many cycles to illustrate the gross characteristics of the

generated sinusoidal functions. The integrator interconnec­

tions or mapping (11, 12) for each iteration rate for the first

program are shown in Figure l8.

The second program consists of rotating the angle, tuT,

incrementally and recording the sinusoid amplitude values over

two segments of a single period. The intent in running this

program is to Illustrate the fine-grain structure effect of

multiple rates. The mapping for this second program for each

www.manaraa.com

34

A cos (out!
+

-> A sin (cul^

-5»

-A sin (mt)/

Figure l8. Sine/cosine cycle test map

www.manaraa.com

35

rate Is shown in Figure 19.

The integrator scaling for each program was to be so

chosen that the angular frequency, uj, for each of the Ix,

and lOx integrator sets is the same.

Based on the sample problem and the general characteris­

tics discussed in section II.A, the incremental processor

characteristics are specified as given in Table 6.

Table 6. Incremental processor characteristics

Characteristic Data

Maximum number of integrators 32

Maximum number of inputs per integrator 7

Maximum integrator bit length 30

Multiple iteration rates Ix, 4x, lOx

Memory requirement 128 words
8 bits per word

D/A converter channels 3

The basic control timing sequence for each integrator

processing cycle as shovm in Figure 13 was utilized in the

processor with two exceptions.

The first exception was the inclusion of an additional

control code, designated SOC (for Special Operating Condition).'

This control code was generated to provide an indication that

the,specific integrator in process is the last integrator of

www.manaraa.com

"iC

,dt

k

n.

A CO S (out)

I

->1

r-̂ -A sln(out)

! +

n

T

Kt

Figure 19. Sine/cosine rotation test

www.manaraa.com

a specific iteration rate and/or that the y data of the speci­

fic integrator in process is to be outputted to the digital-

to-analog converter.

The second exception was the change from serial arithmetic

to a combination parallel-serial arithmetic. This parallel-

serial arithmetic consists of performing binary arithmetic 4

bits in parallel for both the y and th<= r data and performing

the 4 bit sets in serial to complete the handling of all n -bits

of the y and r data. This change was made to achieve a

significant iteration rate increase through use of the 8 bit

parallel output characteristic of the memory.

With the above data in mind, the allotment of data in

memory as available at the memory output during the existence

of each of the control codes is given in Table 7.

Table J . Memory program data allotment

Memory Control Memory
Word Code Bit
Address Number

Data
Content

Comments

m

m+1

m+2

n

"n-l

1 through 5 integrator bit
length

6 through 8 number of inputs

1 through 5

6 through

number of inte­
grator whose out­
put is to be used
as the input
type of input

(Same as for I^)

binary coded
binary coded

binary coded
coded as in
Table 8.

www.manaraa.com

Table 7 (Continued)

Word Code Bit
Address Number

38

Memory Control Memory Data Comments

Content

m+n

m+n+1 SO C

m+n+2 D.

m+n+2 D, p-1

(l through 7 same as for I)
8 existence of SOC code

2, 3

5.

1 through 4

5 through 8

1 through 4

5 through 8

output to D/A
converter
last integrator of
present iteration
rate

least significant
bits of y
least significant
bits of r

next 4 significant
bits of y
next 4 significant
bits of r

coded as in
Table 9.

y data in
binary 2's
complement
r data in
binary 2's
complement

m+n+l+p 1 through 3

4
5

8

through 7

3 most significant
bits of y
y sign bit
3 most significant
bits of y
r sign bit

The logic code for integrator input type is given in

Table 8.

www.manaraa.com

Table 8. Logic code of itegrator input type

Input type Memory Bit Logic State (I code)
Bit 7 Bit 6 ^

At 0 0

+Ay 0 1

-Ay 1 1

Ax 10

The logic code for an output to the D/A converter and the

multiplexer channel to which the output is applied is given in

Table 9.

Table 9. Converter and multiplexer channel code

Data content Memory Bit Logic State (SOC code)
Bit '3 Bit 2

Output to converter/multiplexer 1 0
channel 1

Output to converter/multiplexer 0 1
channel 2

Output to converter/multiplexer 1 1
channel 3

The functional block diagram of the incremental processor

utilizing the program coded output and variable data from

memory is shown in Figure 20.

www.manaraa.com

40

Memory '
Addressor

'Arithmetic i

jUnit
Memory

Multiple •
Rate
Code
Generator!

D/A
Converter

•>7 and
Multiplexer

Timing
Code
Generator

Figure 20. Incremental processor block diagram

www.manaraa.com

4l

The detailed operation of those functions shown in

Figure 20 is discussed in sections III. B through III. P. The

detailed operations of these functions are discussed in terms

of basic logic functional units such as counters, storage

registers, logic-decoding gates, etc. The detailed logic

making up these "basic logic functions consists of normal

combinational and sequential logic circuits (13, l4) and has

been omitted from the main body of the report. A detailed

discussion of the logic is presented in the appendix.

B, Memory Addresser

The block diagram of the memory addresser is shown in

Figure 21.

The PIZ counter contains the address of the Az data of

the integrator presently in process. This counter is advanced

at the beginning of an integrator process cycle (L code time)

and the counter data is selected to address memory when this

integrator's Az data is inserted into memory (ZI code time).

When changing from one iteration-rate integrator to the next,

the past integrator Az location is inserted into memory and

the next integrator Az location is inserted into the PIZ

counter from memory (at AI and AE code times).

The DA counter contains the addresses of the program

instructions, y data and r data. This counter is advanced

during these Instruction extraction times (L, I^, SOC code

times) and during the y, r data computation times (D^ code

www.manaraa.com

) f o

->

PIZ

Counter
5-bit

Up-Counter

o->

HZ
Register
5 bit

Storage
Register

•Output from memory

Input to memory

-o
i

DA

Counter
7 bit

Up-Counter

-̂7̂ Memory Address-

^ Selector

->4 7 bit parallel

Logic-Select
I ^ Gates

X

^ Memory address
'drive circuitry

AP
Address
Generator

7 Bit Code
Generator

:

AP
Address
Generator

7 Bit Code
Generator

•Timing-code generator

Figure 21. Memory addressor

www.manaraa.com

43

times). The DA counter is selected to address memory at these

times also. Similarly to the PIZ counter, counter data is

interchanged with memory data when changing Iteration rate

integrators (at AI and AE code times).

The IIZ storage register is set "by memory output data

to the location of the Az data of the integrator to be used

as an input at the input definition time code time). This

counter is selected to address memory then at this input

extract time (ZE^ code time).

Specific locations in memory are allotted for storing a

specific integrator's initial instruction address and also its

Az address for each of the three iteration rates. These

locations are used for temporarily storing the address of the

last completed instruction of the program sequence for one

iteration-rate set of integrators while processing integrators

in a second set. The AP code generator generates the proper

address code for one of the above allotted storage locations

during the iteration rate change times (AI and AE code times).

C. Timing Generator

The block diagram of the timing generator is shown In

Figure 22.

The timing control codes for one complete integrator-

process cycle are generated by the timing generator. These

timing codes are Illustrated in Figure 13 with the additional

Inclusion of the SOC time code.

www.manaraa.com

• Clock

Iteration rate change code

JCUC
Counter

ZI, L,AI, AE
'time codes

3 bit
Up-Counter

Prom memory

SOC

time codes

Logic-

Decode
Gates D„ time codes

Logic-

Decode
Gates

Logic-

Decode
Gates

CDC
Clock
Control
Flip-Plop

CUC
Clock
Control
Flip-Plop

IDC
Clock
Control
Flip-Flof

3 bit
Down-Counter

CDC
Counter

IDC
Counter

4 bit
Down-Counter

Figure 22. Timing generator

www.manaraa.com

' V

The clock control of the counters cycles sequentially

from the CUC counter to the IDC counter to the CDC counter

and back to the CUC counter. This is performed by using the

reset to one clock control flip-flop to provide the set

control for the next.

The CUC counter generates the length data code (L time

code), the Az insertion to memory code (ZI time code) and the

address interchange codes (AI and AE time codes). The L and

ZI codes are generated each cycle and the AI/AE codes are

generated on those cycles in which an iteration rate change

exists.

The IDC counter generates the input definition codes

(l^ time codes), the extract codes (ZE^ time codes) and

the special condition code (SOC time code). This is performed

by setting the counter with the memory data containing the

number of inputs at the length code time and counting down.

When the IDC clock control is set, the count down is to

zero for absence of an SOC code and to -1 for presence of an

SOC code. The presence or absence of the SOC code is sensed

on memory bit 8 at I^ time.

The CDC counter generates the y, r data computation codes

(D^ time codes). This is performed similarly to the IDC

counter whereby the CDC counter is set by the bit length data

present in the memory output at L time. Count down then occurs

when the CDC clock control flip-flop is set.

www.manaraa.com

D. Multiple-Rate Code Generation

The multiple-rate code generator provides control codes

indicating the iteration rate of the integrator in process

(ix, 4x and lOx control codes) and the presence or absence

of the need for an iteration rate change at the completion of

the integrator process cycle presently being performed.

These codes are generated by use of a 4-bit up-counter

which is advanced at the beginning of each integrator process

cycle and by use of logic decoding gates to determine the

sequence as shown in Figure 17.

E. Arithmetic Unit

The block diagram of the arithmetic unit is shown in

Figure 23.

The arithmetic unit performs the basic arithmetic opera­

tions using the y, r. Ay and Ax data as discussed in section

II.A.and as illustrated in Figure 3. The y and r data form in

memory and in the arithmetic unit is binary 2's complement.

Each Ay input and the Ax input consists of one ternary bit of

data.

The accumulation of incremental inputs. Ay and Ax, is

performed successively by extracting control data from memory

defining the type of input (at I^ code time) and then by

extracting from memory the Az data to be used as an incremental

input (at ZEn code time).

The AI Data Type Store as shown in Figure 23 is set by

www.manaraa.com

47

— Prom memory

•5>- To memory

Y Adder
4 bit
•Parallel
Binary
Adder

R Adder
4 bit

—Parallel
Binary
Adder

Bit Align
Logic-
Decode
Gates

AX Temporary!
Store
2 bit
Storage
Register j

AI Data-
Decode
Gates

AI Data
Type Store
2 bit
Storage
Register

AY
Accumulator
4 bit
Up-down
Counter

± Multiplier
•Logic-
Decode
Gates

R overflow
Sensor
Logic-
Decode
Gates and
2 bit Store

Figure 23. Arithmetic unit

www.manaraa.com

46

the memory data defining the input type at each code time.

The AI Data-Decode Gates use this data to decode and transfer

the input increment from memory at the following ZE code time

(ZE^ code time).

The AX data output from the Al Data-Decode Gates is stored

temporarily in the AX Temporary Store for use during the y, r

computation times (D^ code times). This data consists of the

inputted Az ternary bit for a dx input and a positive ternary

"one" for a dt input.

The AY data output from the Al Data-Decode Gates is

applied as an input to the AY Accumulator. A positive Az

ternary bit input is applied to the up-count input and a

negative Az ternary bit input is applied to the down-count

input. The total AY accumulation is then retained in the

counter for use at the y, r computation time.

The least-significant bit of y as extracted from memory

at D^ time can exist in any one of four memory output y bits

(bits 1 through 4). The AY accumulation must then be aligned

for application to the Y Adder. This is performed in the Bit

Align Logic-Decode Gates by use of the 2 least-significant

bits in the integrator bit length data stored at L code time.

The Y Adder performs parallel binary addition at each of

the y, r computation times using the 4 bits of y data from

memory and the Bit Align Logic outputs. The four bit sets of

data are then added serially by use of storage of the most

www.manaraa.com

significant carry bit for use at the next D time. The

resultant y data is inserted into memory and also applied to

the Y ± 1 Multiplier.

The Y ± 1 Multiplier uses the àX Temporary Store data to

transfer y directly to the R Adder for tx being a positive

increment and transferring the 2's complement of y to the R

Adder for Ax being a negative increment.

The R Adder performs binary addition of the Y ± 1 Multi­

plier output and the r data from memory in the same way as

performed in the Y Adder. The resultant r data is then

inserted back into memory.

The R Overflow Sensor detects and temporarily stores a

Az overflow of the R Adder output data. This sensing is per­

formed by logic decoding of the states of the r sign bit and

the r carry bit into the sign bit. A positive tz ternary bit

is stored for positive overflow and a negative Az ternary bit

is stored for negative overflow. This stored data is then

inserted into memory at the Az insertion time (ZI code time).

F. Memory Input-Output

The memory input-output functions are shown in Figure 24.

The memory-word drivers use the Memory-Address Selector

outputs discussed in section III. B to drive the proper memory

word line being addressed.

The memory-sense-line outputs at word-drive time are

amplified in the memory-sense amplifiers and inputted to set the

www.manaraa.com

bu .

Prom memory-address selector

i
Memory-

Word

Drivers

Timing control codes

Memory
Plane
Thin-
Magnetic-;
Film Plane

V

Memory-

Sense

Amplifiers

Memory-

Bit

Drivers

1
Memory
Input

K- Selector -<-Data for inser
8 bit tion
Logic-Decode

Memory
Output
Register
8 bit Storage
Register

Memory
Bit
Grouping
Logic-Decode
Gates

Az data
output
•(i2 bits)

instruction, y and r
data output

Figure 24. Memory input-output

www.manaraa.com

51

Memory-Output Register. This data is then retained in the

Memory Output Register until the initiation of the next -

memory-access cycle. The Memory Output Register data provides

then the instruction data, y and r data, for use within the

various sections of the incremental processor.

The Memory Bit Grouping Logic selects the proper 2 bits

of the 8 bits available from memory output to supply the Az

ternary-bit output at ZE code time. The control data used to

provide the proper selection is available within the 2 least-

significant bits retained in the IIZ storage register at ZS

time.

The Memory Input Selector selects the various data to be

inserted into memory such as y and r data and including re­

inserting memory-output data to allow retention of the program.

The basic integrator-timing codes are used to control the

selection.

The Memory Input Selector output is applied to the memory-

bit drivers.. These drivers in turn control the final state of

stored data in the thin-magnetic-film plane word being

addressed.

www.manaraa.com

IV. SAMPLE PROBLEM SYNTHESIS

The sample problem to be synthesized has been defined in

basic terms in section III. A. The mappings of integrator

interconnections for the sample problem are shown in Figures l8

and 19.

Scaling of the various integrators must now be done to

specifically define the equation solution. This scaling as

discussed in Mendelson (4) and Braun (15) consists of deter­

mining the physical scaling constants and each integrator bit

length. The scaling is done by use of the relationship between

differentials as given in Equations 6 and 7.

In the following analysis, the iteration-rate constant

will be referred to as iterations per second and the inte­

grator bit length will be referred to as n^ for integrator

number m as defined in Figures I8 and I9.

The pulse or increment rate input to the time scaler,

integrator number 1, is given in Equation 28.

With the initial value of the y register for the time

scaler set to k, the incremental output of the time scaler is

given in Equation 29.

The incremental rate output of the time scaler is given

by Equation 30.

Ax
(28)

Az^ = 2""lk;Ax^ = 2"^1 k K^At (29)

www.manaraa.com

:) J

•^=2-"lkK^ (30)

The Ay accumulation to generate y consists of accumulating

the pulses as they are present at a given pulse rate at the y

input. The accumulation then performs the time integration of

the pulse rate input.

Defining the time scaler output pulse rate as the

incremental output rates and outputs of integrator number 2 and

3 are given in Equations 31 through 34.

^ = Kt 2-"2 Z3 (31)

AZg = 2-^2 (32)

-^ = -K^2-"3Z2 (33)

Az^ = -K^ 2~"3 Zg At (34)

By setting n^ equal to n^. Equations 31 through 34

approximate those for sine and cosine as given in Equations

35 through 38 respectively.

AZg aCA sin (K^

Jt~ " At = Kg 2~"2 A cos (K^ 2"^2 t) (35)

AZg = aCa sin (K^ 2'^2 t)] = 2"^2 a cos (K^ 2"^2 t)At (36)

Az^ aCA COS (K^ 2"^2 t)] _
-ti = ït = -Kt 2' 2 A sin (K. t) (37)

Az^ = a[A COS (K^ 2'"2 t)] = -K^ 2"^2 A sin (K^ 2"^2 t)At (38)

The magnitude A is specified by the initial values of

www.manaraa.com

r- »r

the y registers for Integrator numbers 2 and 3.

The angular frequency, cu, is specified as in Equation 39.

" = 'S (39)

The angular rotation per input time pulse is given by

dividing the angular frequency as given in Equation 39 by

as given in Equation 28. The resultant rotation per

input time pulse, A0/Ax^, is given in Equation 40.

(^0)

The accumulation of the Ay input to integrator number 4

approximates the time integral of the input incremental rate

as given in Equation 4l.

.t <i{7h)
yif - 4 —dT (41)

The digital-to-analog converter is scaled for a i 10 volt

maximum output, whereby the most significant bit in the y data

being outputted corresponds to plus or minus 5 volts,

depending on sign.

The parameters chosen for the sine/cosine cycling test

are given in Table 10.

The resultant fundamental iteration rate is approximately

1.3 X 10 iterations per second and the sinusoidal angular

frequency is 2.6 rad/sec. The resultant sine/cosine amplitude,

7 A, is 2 and the outputted voltage amplitude peak from the

converter Is 7.5 volts.

www.manaraa.com

55

The parameters chosen for the sine/cosine rotation test

are given in Table 11. Additionally, the two segments of the

sinusoidal curve chosen to show the fine-grain structure start

at 0 radians and 0.5 radians. The resultant angular rotation

increments for the lx_, 4x and lOx sets of integrators are

2"^^ and 2~^^ radians respectively.

Table 10. Sine/cosine cycle test parameters

Integrator
Number

Bit Length
n

y Register
Variable

y Initial
Value

Comments

1-lx 15 ^ix
214

2-lx 8 A cos (ujt) 0.75 X 2^

3-lx 8 -A sin (cut) 0

4-lx 8 A sin (out) 0 Output Ix

l-4x 15 214

2-4x 10 A cos (wt) 0.75 X 2^

3-4x 10 -A sin (tut) 0

4- 4x 8 A sin (wt) 0 Output 4x

1-lOx 15 ^lOx 0.8 X 2^^

2-lOx 11 A cos (ujt) 0.75 X 2^

3-lOx 11 -A sin (wt) 0

4-lOx 8 A sin (wt) 0 Output lOx

www.manaraa.com

56

Table 11. Sine/cosine rotation test parameters

Integrator Bit Length y Register y Initial
Number n Variable Value

X
1—

I
1 1—

1

15 X
1—

1

1

2-lx 8 A GO'S (UJt - -g) 0

3-lx 8 -A sin S

e
t 1

ro
i=

i

0.75 X 28

4-lx 11 klxt 0

l-4x 15 1

2-4X 10 A cos (wt - G) 0

3-4x 10 -A sin (wt - 0.75 X 28

4-4x 11 0

1-lOx 15 ^ÏOx 1

2-lOx 11 A cos 0

3-lOx 11 -A sin (Hit - *2) 0.75 X 28

4-lOx 11 •^LOX' 0

www.manaraa.com

r "7 .
V I CL

V. SAMPLE PROBLEM EXPERIMENTAL DATA

The sample problem defined in section IV was programmed

and run on the incremental processor.

The sine/cosine cycling test as shov.n by the mapping in

Figure l8 was programmed and run using the parameters in Table

10, The resultant converter output was recorded using a San­

born Model 150 SB-2 4-channel recorder. The resultant recorded

output is shown in Figure 24.

The cycling test was performed by recording the first few

cycles of the sinusoid, stopping the recorder for five minutes,

and then continuing the recording. The resultant graph then

indicates the sine generation over greater than 100 cycles of

the function.

The expected amplitudes of 7.5 volts and angular frequency

of 2.6 radians per second are indicated in Figure 24 and the

gross structure essentially repeats over many cycles.

The sine/cosine rotation test as mapped in Figure 19

was programmed and run using the parameters of Table 11.

The incremental rotations were performed by repeatedly

allowing computation to be performed until a time-scaler

output increment is detected in integrator-4 y register; then

stopping the computation to allow reading the y register

contents of the cosine register.

The resultant data is plotted as shown in Figure 25 for

the sigment starting at 0 radians and in Figure 26 for the

www.manaraa.com

570

y- /C V

-h /0 \ /

7,5"

+ /o V

Figure 24. Since/cosine cycling test

www.manaraa.com

A

m
o

0.006

0.005

0.004

0.003

0.002

0.001

a,.:

True

Ix generation

_.4x generation

-lOx generation

I o - I - o - I 0 - 1 o - - * • • o 1 —

2 3 4 5 6 7 8 "9 10

B, radians x 10 -3

vn
(30

Figure 25. 0 radians segment incremental rotation

www.manaraa.com

0.246 ..

0.245

0.244 -

Ix-

0.243

0.242

0.241

0.240

, J -4x

—I lOx

0.239 ' 1 2
• I

3 4 5 G 7 b 9

6 - 0.5, radians x 10"^

Figure 26. 0.5 radians segment incremental rotation

www.manaraa.com

DO

segment starting at 0.5 radians.

The improvement in sinusoidal generation is clearly

indicated over both segments of the curve using the higher

iteration rates.

The hardware used to implement the incremental processor

consists for the most part of Collin's C-8400-series logic

cards and rack hardware.

The front view of the processor is shown in Figure 26

which shows the control panel, the nine card rows holding

54 cards each, and the power-supply front panel.

The back view of the processor is shown in Figure 27.

The point-to-point wiring between card plugs, the digital-to-

analog converter near the top of the rack and the shielding

case holding the memory plane located directly behind the front

panel are illustrated in this back view.

Figure 28 shows the 128 word, 8 bit per word thin-

magnetic-film plane, its shielding case and the associated

diode-transformer matrix located next to the memory plane.

Two types of the Collins G-8400-series logic cards used

in the incremental processor are shown in Figures 29 and 30.

Figure 29 shows a KA-series logic inverter and Figure 30

shows an RS-series set-reset flip-flop.

The operating control panel for the equipment is shown

in Figure 3I. The row of indicators at the top of the panel

are used to display selected data within memory and directly

www.manaraa.com

Figure 26. Processor front view

www.manaraa.com

6?

Figure 27. Processor back view

www.manaraa.com

Figure 28. Thln-mn^netlc-fllm memory plane

www.manaraa.com

Figure 29. Collins KA-series logic inverter

www.manaraa.com

Figure 30. Collins RS-series set-reset flip-flop

www.manaraa.com

Figure 31. Incremental processor control panel

www.manaraa.com

below these Indicators are the push-button switches used to

load data into memory. Below the indicators and insertion

switches are the various data-selection, program-insertion,

initialization and operating-control switches.

www.manaraa.com

I:

oo

VI. CONCLUSIONS

The investigation of a multiple iteration rate incremen­

tal processor reported in the preceding pages was concerned

with the critical characteristics pertinent to such a proces­

sor. Specific characteristics which were considered useful to

extend the application of incremental processing were presented

as the following: a basic DDA-integrator functional operation;

an easily determined stored program; minimal storage in the

form of a magnetic array and multiple-iteration-rate operation

for sets of the integrators.

An incremental processor was developed, "built and tested

' which incorporated the above characteristics. The results

obtained in running test programs on the processor demonstrated

the feasibility of design of such an equipment. Additionally,

the results of the test programs illustrated the significant

improvement in computation effected by use of multiple-

iteration rates.

Several areas of application are presently being considered

for use of such a processor. These include industrial process

control, numerical-machine-tool control and data accumulation

and reduction.

An area of research which warrants future investigation

is the development of a useable technique for prediction of

propagation of errors within an incremental processor. This

error analysis has been discussed in the literature such as

www.manaraa.com

69

in Monroe (l6). Hills (17) and Nelson (I8). A continuation

of this effort to supply a complete and concise technique

for application to a complete physical problem is needed.

www.manaraa.com

70

VII. BIBLIOGRAPHY

1. Bush, V. and A.,H. Caldwell. A new type of differential •
analyzer. Franklin Inst. J. 240: 255-326. 1945.

2. Korn, G. A. and T. M. Korn. Electronic analog computers,
2nd ed. New York, N.Y., McGraw-Hill Book Co., Inc. 1956.

3. Savant, C. P., Jr., R. C. Howard, C. B. Solloway and C. A.
Savant. Principles of inertial navigation. New York,
N.Y., McGraw-Hill Book Co., Inc. I96I.

4. Mendelson, J. J. The deimal digital analyzer. Aeronautical
Engineering Review 13: 42-54. 1954.

5. Honeywell Military Products Group Aeronautical Division.
The Honeywell 256-integrator digital differential analyzer.
St. Petersburg, Pla., author. I96I.

6. Autonetics Division of North American Aviation, Inc.
Marine-verdan computer technical description. Vol. 1.
Downey, Calif., author. 1962.

7. Litton Industries. ' Technical description of Litton C-9OO
computer. Woodland Hills, Calif., author. I96O.

8. Mitchell, J. M. and S. Ruhman. The TRICE-a high speed
incremental computer. Institute of Radio Engineers National
Convention Record 6, Part 4: 206-2l6. 1958.

9. Bradley, R. E. and J. F. Genna. Design of a one-megacycle
iteration rate DDA. Spring Joint Computer Conference
Proc. 21: 353-364. 1962.

10. Computer Control Co., Inc. Manual of programming and
operating instructions for the SPEC computer. Los Angeles,
Calif., author. i960.

11. Forbes, G. P. Digital differential analyzers. 4th ed.
Los Angeles, Calif., Los Angeles Addressing and Mailing Co.
1957.

12. Bartee, T. C., I. L. Lebow and I. S. Reed, Theory and
design of digital machines. New York,-N.Y., McGraw-Hill
Book Co., Inc. 1962.

13. Ledley, R. S. Digital computer and control engineering.
New York, N.Y., McGraw-Hill Book Co., Inc. i960.

www.manaraa.com

71

14. Marcus, M. P. Switching circuits for engineers.
Englewood Cliffs, N.J., Prentice-Hall, Inc. I962.

15. Braun, E. L. Digital computer design. New York, N.Y.,
Academic Press, Inc. 1963.

16. Monroe, A. J. Digital processes for sampled data systems.
New York, N.Y., John Wiley and Sons, Inc. 19Ô2.

17. Hills, P. B. .A.study of incremental computation by
difference equations: Report 7849-R-l. Cambridge, Mass.,
Servomechanisms Laboratory, Massachusetts Institute of
Technology. 1958.

18. Nelson, D. J. DDA error analysis using sampled data
techniques. Spring Joint Computer Conference Proc. 21:
365-375. 1962.

www.manaraa.com

7 2

VIII. ACKNOWLEDGEMENTS

The author wishes to acknowledge the faculty of Iowa

State University, both past and present, for providing the

academic guidance which made this work possible. A special

debt of gratitude is owed to Dr. R. G. Brown for his efforts.

Interest and encouragement.

The author is also grateful to Collins Radio Co., without

whose support this work could not have been performed.

Special thanks go to P. Matejcek and R. Schoon for their support

in this work.

The author wishes to acknowledge the encouragement and

understanding of his wife throughout these years of academic
i

training and dissertation preparation.

www.manaraa.com

TO I sJ

I X . APPENDIX

The detailed logic circuitry used to implement the

various logic functions within the incremental processor are

described in the following paragraphs.

A preliminary discussion of the basic digital logic used

is presented prior to specific function description..

The combinational logic equations synthesized within the

.equipment use the AND, -OR and COMPLEMENT or NEGATE functions, '

These functions are used to implement the logic-select gates,

the logic-decode gates, the code-generation circuitry and the

binary adders.

Set-reset flip-flops are used for the storage registers

and these set-reset flip-flops are also used in conjunction

with a two-phase clock to implement the sequential counters.

The Collins Radio Co. C-8400-series inverter cards are

used to implement the combinational-logic equations. The logic

functions performed within the inverter cards is defined by

use of the diagram in Figure 32. A corresponding typical

logic expression for the inverter as shown in Figure 32 is

given in Equation 42 where X is the output and A, B, C, D, E

and F are the inputs.

X = (A-B-C+D-E-Fj (42)

These Inverter cards consist of the KA-series cards which

incorporate one logic function as shown in Figure 32 per card

and the KB-series cards which Incorporate two independent

www.manaraa.com

1)\
I •

AND Circuit

OR Circuit Inverter

Figure 32. Collins inverter logic function

-20v

Inputs y Ou 1/put

+20v

AND circuit OR circuit

Output

Figure 33. AND and OR diode-resistor circuits

www.manaraa.com

logic functions as shown in Figure 32 per card.

The AND and OR functions are performed within the inverter

cards by diode-resistor circuits as shown in Figure 33 and the

inverter circuit consists of a Darlington-pair inverting switch

circuit.

The set-reset flip-flops consist of the Collins RS-series

cards which use the same circuitry as the KB-inverter cards

with an additional internal cross connection between the two

inverter functions as indicated in Equations 43 and 44.

The set input for the flip-flop as implemented in Equations 43

and 44 is the logic variable B. The reset input is A.

The counting function is performed by use of two RS flip-

flops for each counter stage and by use of a controlling two-

phase clock.

The two-phase clock consists of the basic processor clock

(denoted CLA) and a second clock signal (denoted CLB) which is

the complement of CLA; i.e., CLA and CLB are alternately in

logic state land in logic state 0 such that CLA is in logic

state .1 while CLB is in logic state 0 and vice versa.

The first of the two RS flip-flops for each stage

(denoted XA) is utilized to store the present counter-stage

state and the state of this flip-flop is changed when an input

Y = (A + Y) (43)

Internal cross connection

(44)

www.manaraa.com

76

is present. The second RS flip-flop (denoted XB) is used to

store the past state of XA. The logic equations to implement

these functions for the nth stage then are given in Equations

45 through 48 where denotes the nth stage input.

XA = (I -CLA-XB + XA) (4 5)
—2 -^2 2_ ̂ RS flip-flop

XÂ = + XAn)j (46)

(47)

n

XB_ = (CLB-XA + XB)
n ^ n n'

>
XB^ = (CLB-XA^ + XB^) (48)

RS flip-flop

The remaining function necessary to complete the entire

counting function is the determination of the presence of an

input to a specific stage. For up-counting, an input exists

when the next-lower-order stage exhibits a past state of logic

1 and a present state of logic 0. The proper input for up-

counting, I^-up' then given in Equation 49.

In-up =^n-l-^n-l (%)

For down-counting, an input exists when the next-lower-order

stage exhibits a past state of logic 0 and a present state of

logic 1. The proper input for down-counting, I^-down' then

given in Equation 50.

^n-down ̂ ̂ n-l'^n-1 (^O)

Substitution of Equation 49 or Equation 50 into Equations 45

and 46 yield the complete logic functions for the nth stage

of the computer.

www.manaraa.com

77

Storage registers are implemented "by use of a single RS

flip-flop per stage. The data is inputted to each stage under

control of a command variable C^. The resultant flip-flop

logic,expression for the nth stage is given in Equations 51

and 52 where is the data to be inserted into the nth stage.

(51)
RS flip-flop

(52)

The logic-select gates consist of gates which transfer

specific data to the output under control of a select-command

variable as indicated in Equation 53.

Z = V-SV+W-SW+X-SX+Y-SY (53)

The variables in Equation 53 are the output, Z; inputs V, W,

X and Y; and the selection-control variables SV, SW, SX and

SY. Equation 53 is physically Implemented by inverters

connected to generate Equations 54 and 55 or alternately 56 ,

2 = (V-SV+W-SW+X-SX+Y-SY) (54)

Z = (Z) - " (55)

Z = (V.SV+W-SW+X-SX+Y-SY) (56)

The logic-decode gates are used to provide a logic 1

output in presence of specific code combinations on the inputs

to the decode gate. The logic expression is derived by

inserting all of the terms in canonical form for the specific

codes desired and then reducing the expression to a minimal

www.manaraa.com

n * O
I ^

form which can be physically implemented with the logic

inverters.

An illustration of this is given where a 4-bit code

pattern derived from a counter is used to generate an output

on the count of 4^ 7, 10 and 13. This was used specifically

in the processor to derive the multi-rate code output for

4x rate. For the counter output denoted as Yg, Y_ and

Yi^ with Y^ the least significant bit, the terms required in

the logic expression are given in Equation 57.

Z = Y^'Yj.Yg.Yi+Y^.Yg'Yg'Yi+Y^.ïj'Yg'Yi+Y^.Yj'^^.Yi
I I i t " l l r y t t t ! - , P i l l I I - , O " 4 7 10 13

The expression in Equation 57 can be reduced to the desired

form as given in Equation 58 .

Z = (Y2-yjj+Yi-y3-+ïi-Y2-V'2--3'V^l'-2-V-i'^'2-^4'

(53)

The code-generation circuitry is used to provide specific

code combinations on parallel lines in the presence of specific

inputs. The logic expression for the output on a specific bit

line is derived in an analogous way to that for the logic-

decode gates; i.e., the desired state of each bit line is

established by the specific inputs required.

An illustration of, this is given where a 3-hit code

pattern is generated with outputs Z^, Zg and Z^ where the

binary codes on the Z lines are to be binary 3 for an X input

www.manaraa.com

Y9

and binary 6 for a Y input. The resultant three lo^ic expres­

sions are given in Equations 59^ 60 and 6l, where is the

least significant bit output.

Zg = %.+ Y = (x.y) (59)

Z_ = X + Y = (X-Y) . (oO)

= % + y = (x-Y) (61)
tt iign

The binary adder is implemented by use of inverters to

generate the sum, and carry, C . for each nth parallel bit.

The nth bit sum and carry logic expressions for the addition of

X and Y are given in Equations 62 and 63 respectively.

'S3)

The carry function can be reduced to simpler form and the

resultant logic functions generated are given in Equations 64

through 67.
(64)

Sn = {\) (65)

(66)

Cn = (C„) (67)

	1965
	An investigation of a multiple iteration rate incremental data processor
	Robert Allan Bruce
	Recommended Citation

	tmp.1411771981.pdf.EkIq1

