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I. INTRODUCTION 

With the expansion of requirements for real-time physical 

data accumulation and processing, and with the development 

of reliable, precise and high-speed digital hardware, a 

special-purpose digital processor which would be used onboard 

moving vehicles, at remote data pick-up points or in conjunc­

tion with large-scale data processors is feasible and desir­

able . 

Often, much of the physical data to be accumulated or 

generated is analog in nature and the functional variation as 

well as the computational processing desired can be defined by 

differential equations for many applications. With this in 

mind, the usage of the ..computational processing of a high-speed 

digital differential analyzer (DDA) appears most applicable. 

Furthermore, the control functions required in a DDA for 

computation are very compatible with those required for a 

wide variety of data accumulation. The inherent building block 

form of the DDA also allows compatible design for each 

application. 

A. Past Applications of Incremental Processors 

The digital differential analyzer evolved as an outgrowth 

of the analog differential analyzer. 

The first useful analog differential analyzer was developed 

by V. Bush and A. H. Caldwell (l) and used electro-mechanical 
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ball and disk integrators. Application of this type of 

analyzer was primarily devoted to laboratory simulation. 

Later development of the voltage operational amplifier 

(2) made feasible the development of electronic analog compu­

ters, such as the Reeves REAC and Electronic Associates, Inc. 

PACE. Such machines are also used for laboratory simulation 

of control systems. The basic computer elements consisting of 

integrators and amplifiers are used, however, in many control 

systems to provide system compensation. 

The first digital differential analyzer was developed by 

Northrup Aircraft, Inc. in 1950 to realize greater accuracy 

and reliability. This computer, designated MADDIDA (3), 

utilized a magnetic drum for storage and a serial arithmetic 

unit. This computer and others, such as the Computer Research 

Corporation CRC 105 (4) and the Honeywell 256 - integrator DDA 

(5), were used primarily for navigation equation solution. 

The DDA has been incorporated with a general-purpose 

computer to provide a total navigation, guidance and monitoring 

computer for military airborne and missileborne application. 

The Autonetics VERDAN (6) and Litton Industries C-9OO (7) 

computers are typical of this type of combination computer. 

The above DDA's used magnetic drum or disk storage and 

a serial-arithmetic unit commonly shared with memory storage 

blocks to Implement multiple integrator operation. This time­

sharing operation limits the iteration frequency to 400 
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Iterations per second or below. This range of iteration rate 

restricts the application of these computers. 

Machines which exhibited a significant increase in 

iteration rate were developed by Packard Bell Corporation in 

the TRICE computer (8) and by Hazeltine Technical Development 

Center in the SPEDAC computer (9). Each of these machines used 

a separate arithmetic unit and storage in the form of a delay 

line or set of flip-flop registers for each separate computing 

module. The computing modules consisted of several types; 

a digital Integrator, a constant multiplier, a variable multi­

plier, etc. This approach provides a significant increase in 

iteration rates to as high as 1 megacycle. The associated 

increase in hardware causes an accompanying increase in cost and' 

causes reduction in reliability which again severely limits 

application. 

B. Extension of Applications by Multiple-Rate 

Processing and Minimal Memory 

Some of the applications of an incremental data processor 

such as the DDA which appear feasible and desirable are itemized 

below. 

1. Real-time physical data accumulation and computation based 

on solution of differential equations: 

a. Synthesis of transfer functions for control systems 

such as inertial navigators, celestial trackers, 

adaptive autopilots and armament control. 
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b. Collection and processing of data for recording or 

transmission such as data pick-up and filtering, 

squaring, correlating, etc. to reduce the amount of 

data to be stored or transmitted. 

c. Computational operations as required for navigation 

such as dead reckoning, celestial triangle solution, 

etc. 

2. Synthesis of differential equations for simulation of a 

physical problem: 

a. Linear, integral or differential mathematical equation 

solution. 

b. Control system analysis. 

c. Correlation and smoothing studies. 

d. Faster than real-time computation for prediction or 

decision making such as flight path or trajectory 

prediction, orbit prediction, fuel monitoring, etc. 

The characteristics desired in an incremental processor 

for these applications are presented in the following text. 

The processor should be easily programmable in terms of 

the physical problem and this program should be easily modified 

with little processor changes. The use of the DDA integrator 

function is readily interpretable in terms of the differential 

equations of the physical problem and the use of a stored 

program will allow proper modification. 

The processor memory should be non-volatile; i.e., immune 



www.manaraa.com

cr 

to loss of program and data in the event of power shutdown or 

failure. This characteristic requires the use of one of 

several possible magnetic storage devices: a magnetic drum, 

magnetic disk, magnetic tape, a magnetic core array or a 

thin magnetic film array. The magnetic core array or thin-

magnetic-film array are considered most practical to attain 

high-speed, small-space requirements and high reliability 

which are not inherent in the other magnetic storage devices. 

The amount of electronic hardware necessary to drive and 

sense the signals in a magnetic array is proportional to the 

amount of storage required. A significant emphasis is then 

placed on minimization of the amount of this storage in the 

use of such an array.. 

In all incremental machines developed to date using a 

time-shared arithmetic unit, a common iteration frequency has 

been used for all integrators and this frequency has been 

limited to from 50 ops to 400 cps by hardware limitations. 

A wide variation of operating frequency ranges exist in 

various portions of many control systems. Such is the case in 

inertial systems, for example, where the gyro stabilization 

loops and the accelerometer output processing function must 

be sampled at a rate up to 1 kcps while the basic Schuler loops 

and gyro-compassing functions need only be sampled at rates of 

0.1 cps or less. This is similarly true for tracking systems 

where both a fast loop and a slow outer loop are synthesized. 
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A similar situation exists in data accumulation such as 

in airborne flight-data recording where fuel monitoring need 

only be sampled over fractions of seconds or less while 

navigation-position data must be handled at a much faster rate. 

The use of a common iteration rate for all processing 

integrators, therefore, constrains some of the integrators to 

be processed at a much higher rate than is required and, 

alternately, restricts the iteration rate for others to a 

rate which is unusable in many applications. 

The use of multiple-iteration rates for sets of DDA 

integrators would circumvent the above limitations and provide 

a significant improvement in processor performance. An improve­

ment in the iteration rate by an order of magnitude or greater 

above the basic rate for a small portion of the total number 

of integrators is feasible. This would increase the iteration 

rate for those integrators to within the range of 1 kcps to 

20 kcps which would allow usage in carrier-frequency analog 

systems or in audio-frequency data processing. This higher 

rate could alternately be used effectively to improve the 

computational precision in time-dependent equation solution 

as a result of the associated reduction in time increment. 

In summary, specific characteristics of an incremental 

processor which would extend its useful application are a 

basic DDA integrator functional operation, an easily determined 

stored program, minimal storage in the form of a magnetic array 

and multiple-iteration rates for sets of the integrators. 
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II. DESIRED INCREMENTAL PROCESSOR CHARACTERISTICS 

A. Basic Computation and Input Accumulation 

Before the incremental processor characteristics are 

studied, a discussion of the basic DDA integration process 

is in order. 

The integration of y(x), as shown in Figure 1, with 

respect to x over the limits to is given in Equation 1. 

z = y(x) dx (l) 
^o 

This integration can be approximated by Equation 2 for 

increments of x equal to constant Ax. 

m m X -X 
z ~ 2 y. (x) Ax = Ax Z y^ (x) where — = Ax 

i=l i=l ^ 
( 2 )  

Similarly, y(x) can be approximated by Equation 3. 

m 
y(x) - Z (A y(x))^ + y^ (3) 

i=l 

The variables z and y can be adequately approximated by 

proper choice of the incremental size or quantization of x 

and y (i.e.. Ax and Ay). The increments. Ax and Ay, are 

physically represented in the digital machine by one ternary 

bit having possible values of +1, 0 or -1 and the summation 

consists of normal binary addition. 

In a physical problem, y will not exceed some finite 

maximum, y . The sum z will not, therefore, change more than 
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y(x) 

A 
M 

X Ax 
^x 

m 

Figure 1. Basic integration 

du 
dv 
dw 

dx->. 
• • \ 

± 

±u ±v ±w ^ ± ±u ±v ±w ^ 

>^z ='2~^(±u ±v ±w)dx 

Figure 2. DDA integrator symbol 
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y for any one of the 1th summations with Ax normalized to 

± 1 or 0 as above. With y physically limited to a value 

less than n bits in length and with Ax normalized to 1, the 

summation of y„^^ and z can be performed by adding y to only 

the lowest n bits of z and by applying the nth carry bit to 

the (n+l)th bit of z. By outputting the carry bit to the 

(n+l)th bit at each iteration and retaining the remaining 

lowest n bits, referred to as the remainder, r^, for summation 

with y at the next iteration, a quantization of z can be 

effected. That is, accumulation of the (n+l)th bit output 

at each iteration will yield a value proportional to z as in 

Equation 4 and truncated at the nth bit. 

w = 2̂ z where w = S y.(x) Ax truncated (4) 
i ^ 

z = 2~^w = Z 2"^y^. Ax truncated (5) 
i 

The accumulation of the (n+l)th bit of z can be considered 

to be the accumulation of an increment of z, Az. The increment 

of z can then be represented as in Equation 6. 

Az = 2"^yAx or dz ~ 2"^ydx (6) 

The Incremental output Az can then be stored and applied 

as either a dependent-variable or independent-variable input 

to any other Integrator, and, in fact, as an input to the 

present integrator at the next iteration time. 

Each integrator is then processed sequentially in one 

iteration period. 



www.manaraa.com

10 

The variables x, j, and z discussed thus far have been 

considered digital variables represented by a set of binary 

bits normally called a "word". The conversion from or to 

analog variables can be performed by the use of a proportion­

ality constant, which, in a given equipment, is determined 

by the specific operation of the analog-to-digital converters 

or digital-to-analog converters. This is represented as in 

Equation 7. 

Xg^ where x^ = digital variable (7) 

Greater versatility in use of the integration process is 

achieved by performing accumulation of several incremental 

inputs (i.e., performing an intermediate algebraic summation) 

into a given integrator as in Equation 8. 

The symbolic representation for each integrator adopted 

by the author is shown in Figure 2. 

The basic digital operations required are listed below. 

1) Extract from memory Au, Av, Aw from Az storage 

2) Sum Au, Av, Aw to form Ay total = Ay^ 

3) Extract y^_^ and add to Ay^ to form y^ 

4) Store y^ into memory 

or 
= analog variable 

= proportionality constant with 

units of pulses per unit 

analog variable 

Ay = ± Au ± Av i Aw ± (8) 
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^ 5) Multiply "by Ax to form y^Ax 

6) Extract r^_^ and add to y^Ax to form r^^ and Az 

7 ) Store r^^ and Az into memory 

These operations are shown diagrammatically in Figure 3. 

Two forms of external input conversion and/or accumulation 

which utilize the basic integrator operations are shown in 

Figures 4 and 5. 

The first form consists of: a digital-to-analog voltage 

conversion of the updated variable, y^; comparison of this 

resultant voltage with the input voltage, and 

amplification and pulse shaping of the resultant difference 

to provide an incremental output. This is shown in Figure 4. 

The second form of input accumulation is utilized to 

generate the increment of a digital input, u, which is avail­

able as one word. The updated variable, y^, is digitally 

compared bit-by-bit with the input, u, to determine a positive 

or negative difference. This difference then provides the 

incremental output. This form is shown in Figure 5-

In each of the above forms of input accumulation, the 

increment accumulation is identical with that used in an 

integrator performing internal computations. This similarity 

allows use of a set of integrators for either computation 

or sequential input sampling and conversion or combinations 

of both. 
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Au 
Av 

n-1 

Ax 
Memory 

Az 

Multi­
ply 

Figure 3. Basic arithmetic operations 
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Memory <( 

k 

y n-1 

n 

Az^-C 

'.Digital-to-
; Analog 

Yn I 
rHVoltage 
I Converter 

V input 

; Analog . Î 

Voltage 

! Comparator 

Amplifier and 

Pulse Shaping' 

Figure 4. Voltage converter 

Memory ! y 
n-1 

1 ^n 

y^ i Ditigal 

Comparator u 

Figure 5. Input accumulator 
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B. Minimization of Memory 

In reviewing the computational processing presented in 

section II. A memory space must be available for data storage 

of three digital variables for each integrator; i.e., variables 

Lz, y and r. The variable Az requires 2 bits of data to 

specify the one ternary bit of incremental data. The variables 

y and r require the same number of at least n bits and n will 

vary for each specific integrator. 

To more thoroughly understand the range of n desired, 

several commonly used forms of integrator connections are 

presented in Figures 6, 7, 8 and 9. 

Additionally, the relationship between n binary-bit 

accuracy and m decimal-digit accuracy is indicated in 

Equation 9. 

n = logg 2" = logg = logg 10 log^o lo"^ = 3.32m (9) 

For example, 6 digit accuracy requires 20 bit accuracy and 8 

digit accuracy requires 27 bit accuracy. 

The accuracy of sine-cosine generation, constant multi­

plication, variable multiplication and time integration is 

dependent on the usage of the incremental processor. For 

laboratory synthesis of sets of differential equations entirely 

within the processor, 4 to 8 digit (l4 to 27 bits) accuracy 

may be required. However, in real-time processing of data, 

analog-to-digital or digital-to-analog conversion of the data-

limit the accuracy to the order of 3 to 4 digits (lO to l4 
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dz = (u+v-z) 2-"k^(Jt 

For -Il « (u+v-z) 2""kj, 

U + V ~ z 
or d(u + v) ~ dz 
or du + dv ~ dz 

Figure 6. Summer 

u+v-z 

2^de 

A cos 6 

2^ 2 ̂ A cos 0 d0 

= d(A sin 9) 

dz = -2^ 2- ^ A sin 0 

= d(A cos 0) 

(A < 2̂ ) 

Figure 7. Sine-cosine generator 
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dx 

n)->. dz = 2 ̂  a dx = d(2""a x) -n. 

(a < 2*) 

Figure 8. Constant multiplier 

du —a- dz=2 vdu 

dv 

z= 2 vdu+2 udv 

= d(2~^uv) 

Summer 

Figure 9- Variable multiplier 
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bits). For the summer, n need only be large enough to allow 

storage of 2^-1 bits where n is typically 3 or 4. 

Typical values for n and an expected average for n are 

given in Table 1. 

Table 1. Typical integrator bit lengths 

Integrator function Bit length 
n 

Summer 3 
Sine-cosine generator 10 to 14 'V 12 
Constant multiplier 10 to 14 - 12 
Variable multiplier 10 to 14 ~ 12 
Time integrator 10 to 14 ~ 12 
Total " 51 

Average n = ~ 10 

With these expected conditions of a possible maximum n of 

.27 bits and an average n of 10 bits, variable-bit-length 

storage is necessary for the r and y data in order to minimize 

the memory requirements. An additional 5 bits of memory are 

required, however, for each integrator to uniquely specify 

n between 1 and 28 bits. 

In addition to the Az, r, y and n size data, instruction 

data must be stored to specify the inputs to each integrator. 

This data must specify the type of input (dx, dt, +dy, -dy) 

and the location of the az data to be applied as the input. 

The number of inputs for various Integrator functions 

are given in Table 2. 
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Table 2. Number of inputs per integrator function 

Integrator function Number of inputs 

bummer 
Sine-cosine generator Integ 

Integ 
Constant multiplier 
Variable multiplier Integ 

Time integrator 
Low pass filter 

4 
2 
2 
1 
2 
2 
2 
3 
_1 
19 

Average number of inputs = •— ~ 2 

A condition exists, therefore, where the maximum number 

of inputs is 4 or 5 for the summing function, for example, 

and the average number of inputs is 2. Memory reduction can 

then be accomplished by establishing control or instruction 

to accumulate a variable number of inputs. An additional 3 

bits of memory are required per integrator to specify the 

number of inputs if up to 7 inputs are provided for. 

Each integrator input .can then be specified with a mini­

mum of 2 bits to identify the type of input and logg N bits 

to uniquely identify the integrator output (AZ) to be used as 

the input where N is the nearest power of 2 equal to or 

greater than the total number of integrators. 

By use of variable length storage for n, a variable 

number of inputs and a binary coded specification for each 

input, a minimum amount of memory per integrator is achieved. 

The number of bits of storage per integrator for specific data 
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Is as follows: 3 bits for specifying the number of inputs; 

5 bits for specifying the r, y computation bit length; 2n bits 

of r, y data; 2 bits of Az store; 2m bits to define type of 

input for m inputs and m logg N bits to specify the input to 

be used. The total number of bits of memory minimum, 

per integrator is given by 

^mln = 10+2n+m(2+loS2 N) (lO) 

For the expected average values of n=10 and m=2, is given by 

®mln = 3t + 2 logg N (11) 

For comparative purposes, the three existing methods of 

data storage used in DDA synthesis will be discussed along 

with the memory requirement for each. 

The first method utilizes a magnetic drum for storage, 

such as in the Northrup Aircraft, Inc. Maddida computer (3), 

Autonetics Verdan computer (6) and Minneapolis-Honeywell 256 

Integrator DDA (5), where the data is stored in several tracks 

or channels on the drum as indicated in Figure 10. The number 

of bits per integrator for specific data is as follows: 2n̂ ^̂  

bits of r, y data where n is the maximum allowable Integra-iTia-X 

tor bit length; 2 bits of Az store; 2m bits to specify the 

type of input where m is the maximum number of inputs and 

m max logg N bits to specify the input to be used. The corres­

ponding number of total bits of memory for drum storage per 

integrator, is given by 

%) = 2 + 2"max + %ax N) (12) 

For m =5 and n = 24, the total drum storage per max max ' o ^ 
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rC-n reserved ! max 
Channel 1 r data !-<-n, used —>-! 

2 y data I i 

->-<-n reserved , max , 
r<ng used —>4 

-7>-

3 
4 

L _Int ̂  #1 _ I L _ Int • £2 1 [ Int. #3 
jlnout data for jinput data for : 
int. # 2 Int. # 3 

inputs of: of: 

2 bits-input type I 2 bits-input type 
logg N bits - j logg N bits -
input = Az input = Az 

where n = r, y data max bit length 
ITLA.X 

Figure 10, 

N 2 total number of integrators 

Magnetic-drum data format 

K bits 

Delay Line 1 r data k-n, used 
2 y data 

3'I Input 
4 j Data 

Int ._JaL 

\ L 

5 Az 
data 

k bit pairs 
Each specifying: 
Type of input to 
Int. #2 = Oj Ax, 
±Ay from Az 

N bit pairs 

<- K bits 

ng used 

_ Int_. .;#2 J _ _ 

where K = n 
max 

= N 

Figure 11. Delay-line data format 

\—I 
k bit pairs 
Each specifying: 
Type .of-input to 
Int. #3 = o, 
± Ay from Az 

"max Î " 

"max ; N 

/ 
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integrator is given as 

= 60 + 5 logg N ' (13) 

The second method utilizes recirculating delay lines, such 

as in the Computer Control Co., Inc., SPEC computer (lO), 

in a format similar to that used in drum storage. The data is 

distributed down six delay lines at any instant of time as 

indicated in Figure 11. The total number of bits of memory 

per integrator for delay-line storage, is given in 

Equation 14 where the maximum integrator bit length is n 

and the maximum number of Integrators Is 2̂ . 

Bdl -fz + "max for > N (14) 
I 2 + 4 N for n < N 
^ max -

For = 24, the total delay line storage per integrator is 

given by 

= 

t; 
D̂L for 24 > N (15) 

2 + 4N for 24 5 N 

The third method consists of programming a general-

purpose computer to synthesize the DDA integrator function. 

A typical program to perform this function is given in 

Table 3> tabulated below. 

Table 3. CP program of DDA Integrator function 

Instruction Memory requirement 

1) Clear and add Ay^ 

2) Add Ayg 

1 word - Instruction 

1 word - Instruction 
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Memory requirement 

1 word -
1 word -

1 word -

1 word -

1 word -
1 word -

instruction 
y^ data 

instruction 

instruction 

instruction 
r^ data 

1 word - instruction 

1 word -
1 word -

instruction 
Az data 

10 words 

Instruction 

3) Add y. 
n-l 

4) Store 

5) Multiply 

6) Add 

"n 

Ax 

^n-1 

7) Store n 

8) Sense overflow 
and store Az 

Total 

For a word length of 24 bits, the total number of bits of 

memory for GP synthesis per integrator, is 240 bits. 

The measure of reduction of memory by use of the minimal 

memory DDA technique is given by the ratios of and 

Bgp to B^^^ as in Equations l6, 17 and 18 respectively. 

®MD 60+5 logg N 

34+2 logg N B mm 

B DL 
B min 

M 
3 4 + 2  l o g g  N  

S 2 + 4N 

B 

3 4 + 2  logg N 

for 24 > N 

for 24 < N 

(16) 

(17) 

GP 240 
B min 3 4 + 2  logg N 

(18) 

These results are graphed in Figure 12 as a function of N. 
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®DL/®min 

lâiiiiliuiliiiiuuiiuiii 

1000 

N 

Figure 12. Storage requirement ratios 
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C. Multiple-Rate Processing 

The timing sequence to perform the DDA Integrator dltlal 

operations presented In section II. A Is Illustrated in 

Figure 13. 

The timing sequence presented in Figure 13 is repeated 

for each iteration period. 

The functions performed during each specific memory cycle 

in Figure 13 are given in Table 4. 

Table 4. Integrator processing cycle functions 

Memory cycle Function performed 

L Extract n value and number of 
Inputs . 

I, Extract Az number as 1st input 
and 1st input type 

ZE, Extract Ist input Az value 
Add to cleared Ay accumulator if 
Ay input 
Temporarily store if Ax input 

Ig Extract Az number as 2nd input 
and 2nd input type 

ZEg Extract 2nd input Az value 
Add to Ay accumulator if Ay input 
Temporarily store if Ax input 

D D Extract r, y (nth lowest bit 
to sign bit) 
Add y^ to Ay lowest bit to 
update y^ 
Multiply resultant y by Ax 
Add r to resultant y^Ax to 
update r 
Insert undated y^ into memory 
Insert undated r^ into memory 
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1 Integrator iteration processing cycle 
1 Period of memory read-write cycle 

-é-M» 

i i 1  ̂ 1 1 1 1 1 1 1—i>— 
L ZE^ Ig ZEg D„ 

K- y. computation 

Figure 13. Control timing sequence 

j_^ ..Interleaving sub-interval . 

1 integrator iteration procès sing cycle 

-j i 1 i 1 1 i 1 1— 
. ̂ Ix 4̂x 4̂x 2̂x 4̂x 4̂x 2̂x Îx 4̂x 

where I^^ = 1 of the "ix" integrators 

= 1 of the "2x" integrators 

= 1 of the "4x" integrators 

Figure 14. Interleaving sequence 
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Table 4 (Continued) 

Memory cycle Function performed 

Repeat above for n-lst bit 
through sign bit, 
Sense overflow, Az, and 
temporarily store at time 

ZI Insert temporarily stored Az 
output into memory 

Each integrator in most existing incremental computers 

is processed sequentially once per iteration period and the 

input data for each integrator is accumulated during the time 

that the prior integrator r and y data are being processed. 

This time overlapping of data for two different integrators 

cannot be performed when multiple iteration rates are used, 

however, and the. input and computational data must be stored 

as an addressable closed set of data in memory. 

- In order to perform multiple iteration rates with 

different sets of integrators, the interleaving of process 

cycles for the various integrators must be considered. This 

interleaving as Illustrated in Figure l4 for the case of the 

fundamental iteration rate (ix) and multiples of 2 (2x) and 

4 times (4x) the fundamental rate with the same number of 

integrators at each rate. Each of the set of Ix, 2x and 4x 

integrators would be processed sequentially to complete the 

fundamental iteration period. 



www.manaraa.com

27 

The sample sequence In Figure l4 Indicates the need for 

random memory access to any integrator block of data and 

clarifies the need for a closed set of data per integrator. 

The memory addressing for the interleaving sequence then 

consists of random access to the starting address of each 

data block and normal sequential addressing within the data 

block. 

The addressing then uses normal sequential addressing 

within the data block, sequential'processing of the set of 

integrators of a given iteration rate and switching between 

the sets of integrators of the different iteration rates 

according to the interleaving sequence. In the process of 

address transferring between the sets, the last address 

for each of the iteration sets not in process is temporarily 

stored and returned to upon continuing the processing of a 

given set. This temporary storage and transfer requires 

added control timing within the integrator timing sequence 

as indicated in Figure 15. 

The iteration periods for the various rates should now 

be considered to determine the proper interleaving sequence. 

For the case where the number of integrators operating at 

each of the various rates is different, the fundamental 

recurrence period of processing will be a multiple of the 

average Ix period. This multiple, k^, can be determined by 
0 

considering the total number of integrator processor cycles 
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ax integrator 

D. ZI AI 

"bx" integrator 

-=>-t 
AE L 

where AI = temporary store of last "ax" 
set address 

AE = Extract from temporary storage 
last "bx" set address 

Figure 15. Control transfer sequence 
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in the fundamental recurrence period, for 3 iteration 

rates as given in Equation 19. The terms k^dp and d^ep must 

be multiples of 

Tf = (p + dp + ep) T^ = (k^ p + dp + ep) (19) 

where p = total number of "ix" integrators 

d = total number of "ax" integrators 
in each interleaving sub-interval 

e = total number of "bx" integrators 
in each interleaving sub-interval 

T^= average integrator cycle period 

the total number of ax integrators, q, and bx integrators, s, 

respectively as indicated in Equations 20 and 21. 

k^dp = kgq (20) 

where k^, kg and kg are lowest integers 

k-j^ep = kgS (21) 

The resultant average iteration periods for Ix, ax and 

bx iteration periods are T, , T and T, as given in 
^̂ av &*av Ĝ av 

Equations 22, 23 and 24 respectively. ' 

Tlx = ̂  = (1 + a + e) pT (22) 

Xv =-is Xv ' 

The above indicate that integral multiples of iteration 

rates by use of the interleaving technique are possible only 

for integral ratios of q and s to p. Non-integral multiples 

and a T, dependence on p, d, e and q can be accounted for 
âv 
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in actual computation, however, by use of a constant-multiplier 

interconnection operating on the time variable and by precise 

measurement of the Ix iteration period. 

The iteration periods will vary around the average values 

due to variation in due to relative values of p, q and s 

and due to the specific sequence within the interleaving 

sub-interval. The variation due to T^ and the relative values 

of p, q and s will tend to be small due to averaging over 

several process cycles. The specific sequence within the 

interleaving sub-interval will be the dominant cause of instan­

taneous variations in iteration periods and should be con­

sidered in further detail. 

An adequate upper bound on the variation can be achieved 

by use of the following technique to determine the inter­

leaving sequence. 

Step 1. 

Step 2. 

Step 3. 

The maximum relative variation, v^^ and v^^, for the ax 

Given p, q, s and an approximate value for T^ 

Tlx, T^^, T^x required, determine d and e from 

Equations 22, 23 and 24 to satisfy the iteration 

period requirement. 

Determine k from Equation 25 where k is an 

integer. 

_e ^ ^ e 
d ̂ - 1 < k < -J (25) 

Specify the sequence from the above determined 

d, e and k as illustrated in Figure l6. 
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interleaving sub-interval 

(-<— Sub-sequence 

k "bx" integrators 

-h - 1 -

<-Repeat sub-sequences for ->--<-e-kd"bx" ->-| 
integrators 

bx 'bx ax 

a total of d sub-sequences 

^bx ax bx bx 

Figure l6. Interleaving sub-sequence 

Interleaving sub-interval — -> 

^Ix ^lOx ^lOx ̂ 4x ^lOx ^lOx ̂ 4x ^lOx ^lOx ̂ 4x ^lOx ^lOx ̂ 4x ^lOx ^lOx 

Figure 17. Ix, 4x and lOx interleaving sequence 

-v1 
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.S^a 

and bx Iteration periods using the above technique are given 

in Equations 26 and 27 respectively. Less than 20fo maximum 

T ^ ax max variation eTc e 
""ax ? T— = dT— = (1 + d + e)q (2^) 

av av 

T , bx max variation Tc e /orrN 
""bx - T— - T^.- (1 + d t e)s (27) 

av av 

variations is achieved for the number of ax and bx integrators 

(q and s) equal to or greater than 5. In performing computa­

tions, the average iteration period must be known precisely 

but a 20^ variation over several periods will have a secondary 

effect on computational accuracy. 

An example of the interleaving sequence using the above 

technique for d = 4 and e = 10 is illustrated in Figure 17. 

Additionally, the iteration rates for 4 combinations of 

p, q, s, d and e are given in Table 5- A value of T^ = 

9 li sec. was used in the computations which is an expected 

value if a thin-magnetic-film memory were used. 
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Table 5- Iteration rate combinations 

Total 
no. of 
integ. 
p+q+s 

No. of 
Ix 

integ. 
P 

No. of 
ax 

integ. 
q 

No , of 
bx 

integ. 
s 

^Ix fax fbx 

d=4 
e=10 50 30 12 8 246.7 

ops 
2.467 
Iccps 

9.252 
kcps 

100 70 20 10 105.7 
cps 

1.480 
kcps 

7.402 
kcps 

200 140 40 20 52.9 
cps 

740 
cps 

3.701 
kcps 

d=0 
e=0 250 250 - - 444.4 

cps 
- -
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III. IMPLEMENTATION OP DESIRED PROCESSOR CHARACTERISTICS 

A. Basic Operation 

The specific characteristics of the incremental processor 

to be implemented were chosen based on the sample problem to 

be performed. 

The sample problem was chosen to illustrate the minimal 

memory and multiple-iteration-rate techniques. The three 

speeds of Ix, 4x and lOx were chosen to illustrate the 

multiple rates. A problem requiring 5 to 8 integrators oper­

ating at each iteration rate was assumed and it was decided to 

run the same problem at each iteration rate. 

The specific problem chosen consists of generating sine 

and cosine functions. 

Two programs were chosen to be run to illustrate the 

effect of the multiple-iteration rates. 

The first program consists of cycling sine and cosine for 

many cycles to illustrate the gross characteristics of the 

generated sinusoidal functions. The integrator interconnec­

tions or mapping (11, 12) for each iteration rate for the first 

program are shown in Figure l8. 

The second program consists of rotating the angle, tuT, 

incrementally and recording the sinusoid amplitude values over 

two segments of a single period. The intent in running this 

program is to Illustrate the fine-grain structure effect of 

multiple rates. The mapping for this second program for each 
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A cos (out! 
+ 

-> A sin (cul^ 

-5» 

-A sin (mt)/ 

Figure l8. Sine/cosine cycle test map 
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rate Is shown in Figure 19. 

The integrator scaling for each program was to be so 

chosen that the angular frequency, uj, for each of the Ix, 

and lOx integrator sets is the same. 

Based on the sample problem and the general characteris­

tics discussed in section II.A, the incremental processor 

characteristics are specified as given in Table 6. 

Table 6. Incremental processor characteristics 

Characteristic Data 

Maximum number of integrators 32 

Maximum number of inputs per integrator 7 

Maximum integrator bit length 30 

Multiple iteration rates Ix, 4x, lOx 

Memory requirement 128 words 
8 bits per word 

D/A converter channels 3 

The basic control timing sequence for each integrator 

processing cycle as shovm in Figure 13 was utilized in the 

processor with two exceptions. 

The first exception was the inclusion of an additional 

control code, designated SOC (for Special Operating Condition).' 

This control code was generated to provide an indication that 

the,specific integrator in process is the last integrator of 
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n. 
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Kt 

Figure 19. Sine/cosine rotation test 
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a specific iteration rate and/or that the y data of the speci­

fic integrator in process is to be outputted to the digital-

to-analog converter. 

The second exception was the change from serial arithmetic 

to a combination parallel-serial arithmetic. This parallel-

serial arithmetic consists of performing binary arithmetic 4 

bits in parallel for both the y and th<= r data and performing 

the 4 bit sets in serial to complete the handling of all n -bits 

of the y and r data. This change was made to achieve a 

significant iteration rate increase through use of the 8 bit 

parallel output characteristic of the memory. 

With the above data in mind, the allotment of data in 

memory as available at the memory output during the existence 

of each of the control codes is given in Table 7. 

Table J .  Memory program data allotment 

Memory Control Memory 
Word Code Bit 
Address Number 

Data 
Content 

Comments 

m 

m+1 

m+2 

n 

"n-l 

1 through 5 integrator bit 
length 

6 through 8 number of inputs 

1 through 5 

6 through 

number of inte­
grator whose out­
put is to be used 
as the input 
type of input 

(Same as for I^) 

binary coded 
binary coded 

binary coded 
coded as in 
Table 8. 
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Table 7 (Continued) 

Word Code Bit 
Address Number 

38 

Memory Control Memory Data Comments 

Content 

m+n 

m+n+1 SO C 

m+n+2 D. 

m+n+2 D, p-1 

(l through 7 same as for I ) 
8 existence of SOC code 

2, 3 

5. 

1 through 4 

5 through 8 

1 through 4 

5 through 8 

output to D/A 
converter 
last integrator of 
present iteration 
rate 

least significant 
bits of y 
least significant 
bits of r 

next 4 significant 
bits of y 
next 4 significant 
bits of r 

coded as in 
Table 9. 

y data in 
binary 2's 
complement 
r data in 
binary 2's 
complement 

m+n+l+p 1 through 3 

4 
5 

8 

through 7 

3 most significant 
bits of y 
y sign bit 
3 most significant 
bits of y 
r sign bit 

The logic code for integrator input type is given in 

Table 8. 
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Table 8. Logic code of itegrator input type 

Input type Memory Bit Logic State (I code) 
Bit 7 Bit 6 ^ 

At 0 0 

+Ay 0 1 

-Ay 1 1 

Ax 10 

The logic code for an output to the D/A converter and the 

multiplexer channel to which the output is applied is given in 

Table 9. 

Table 9. Converter and multiplexer channel code 

Data content Memory Bit Logic State (SOC code) 
Bit '3 Bit 2 

Output to converter/multiplexer 1 0 
channel 1 

Output to converter/multiplexer 0 1 
channel 2 

Output to converter/multiplexer 1 1 
channel 3 

The functional block diagram of the incremental processor 

utilizing the program coded output and variable data from 

memory is shown in Figure 20. 
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Memory ' 
Addressor 

'Arithmetic i 

jUnit 
Memory 

Multiple • 
Rate 
Code 
Generator! 

D/A 
Converter 

•>7 and 
Multiplexer 

Timing 
Code 
Generator 

Figure 20. Incremental processor block diagram 
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The detailed operation of those functions shown in 

Figure 20 is discussed in sections III. B through III. P. The 

detailed operations of these functions are discussed in terms 

of basic logic functional units such as counters, storage 

registers, logic-decoding gates, etc. The detailed logic 

making up these "basic logic functions consists of normal 

combinational and sequential logic circuits (13, l4) and has 

been omitted from the main body of the report. A detailed 

discussion of the logic is presented in the appendix. 

B, Memory Addresser 

The block diagram of the memory addresser is shown in 

Figure 21. 

The PIZ counter contains the address of the Az data of 

the integrator presently in process. This counter is advanced 

at the beginning of an integrator process cycle (L code time) 

and the counter data is selected to address memory when this 

integrator's Az data is inserted into memory (ZI code time). 

When changing from one iteration-rate integrator to the next, 

the past integrator Az location is inserted into memory and 

the next integrator Az location is inserted into the PIZ 

counter from memory (at AI and AE code times). 

The DA counter contains the addresses of the program 

instructions, y data and r data. This counter is advanced 

during these Instruction extraction times (L, I^, SOC code 

times) and during the y, r data computation times (D^ code 
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•Timing-code generator 

Figure 21. Memory addressor 
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times). The DA counter is selected to address memory at these 

times also. Similarly to the PIZ counter, counter data is 

interchanged with memory data when changing Iteration rate 

integrators (at AI and AE code times). 

The IIZ storage register is set "by memory output data 

to the location of the Az data of the integrator to be used 

as an input at the input definition time code time). This 

counter is selected to address memory then at this input 

extract time (ZE^ code time). 

Specific locations in memory are allotted for storing a 

specific integrator's initial instruction address and also its 

Az address for each of the three iteration rates. These 

locations are used for temporarily storing the address of the 

last completed instruction of the program sequence for one 

iteration-rate set of integrators while processing integrators 

in a second set. The AP code generator generates the proper 

address code for one of the above allotted storage locations 

during the iteration rate change times (AI and AE code times). 

C. Timing Generator 

The block diagram of the timing generator is shown In 

Figure 22. 

The timing control codes for one complete integrator-

process cycle are generated by the timing generator. These 

timing codes are Illustrated in Figure 13 with the additional 

Inclusion of the SOC time code. 



www.manaraa.com

• Clock 

Iteration rate change code 

JCUC 
Counter 

ZI, L,AI, AE 
'time codes 

3 bit 
Up-Counter 

Prom memory 

SOC 

time codes 

Logic-

Decode 
Gates D„ time codes 

Logic-

Decode 
Gates 

Logic-

Decode 
Gates 

CDC 
Clock 
Control 
Flip-Plop 

CUC 
Clock 
Control 
Flip-Plop 

IDC 
Clock 
Control 
Flip-Flof 

3 bit 
Down-Counter 

CDC 
Counter 

IDC 
Counter 

4 bit 
Down-Counter 

Figure 22. Timing generator 
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The clock control of the counters cycles sequentially 

from the CUC counter to the IDC counter to the CDC counter 

and back to the CUC counter. This is performed by using the 

reset to one clock control flip-flop to provide the set 

control for the next. 

The CUC counter generates the length data code (L time 

code), the Az insertion to memory code (ZI time code) and the 

address interchange codes (AI and AE time codes). The L and 

ZI codes are generated each cycle and the AI/AE codes are 

generated on those cycles in which an iteration rate change 

exists. 

The IDC counter generates the input definition codes 

(l^ time codes), the extract codes (ZE^ time codes) and 

the special condition code (SOC time code). This is performed 

by setting the counter with the memory data containing the 

number of inputs at the length code time and counting down. 

When the IDC clock control is set, the count down is to 

zero for absence of an SOC code and to -1 for presence of an 

SOC code. The presence or absence of the SOC code is sensed 

on memory bit 8 at I^ time. 

The CDC counter generates the y, r data computation codes 

(D^ time codes). This is performed similarly to the IDC 

counter whereby the CDC counter is set by the bit length data 

present in the memory output at L time. Count down then occurs 

when the CDC clock control flip-flop is set. 
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D. Multiple-Rate Code Generation 

The multiple-rate code generator provides control codes 

indicating the iteration rate of the integrator in process 

(ix, 4x and lOx control codes) and the presence or absence 

of the need for an iteration rate change at the completion of 

the integrator process cycle presently being performed. 

These codes are generated by use of a 4-bit up-counter 

which is advanced at the beginning of each integrator process 

cycle and by use of logic decoding gates to determine the 

sequence as shown in Figure 17. 

E. Arithmetic Unit 

The block diagram of the arithmetic unit is shown in 

Figure 23. 

The arithmetic unit performs the basic arithmetic opera­

tions using the y, r. Ay and Ax data as discussed in section 

II.A.and as illustrated in Figure 3. The y and r data form in 

memory and in the arithmetic unit is binary 2's complement. 

Each Ay input and the Ax input consists of one ternary bit of 

data. 

The accumulation of incremental inputs. Ay and Ax, is 

performed successively by extracting control data from memory 

defining the type of input (at I^ code time) and then by 

extracting from memory the Az data to be used as an incremental 

input (at ZEn code time). 

The AI Data Type Store as shown in Figure 23 is set by 
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Figure 23. Arithmetic unit 
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the memory data defining the input type at each code time. 

The AI Data-Decode Gates use this data to decode and transfer 

the input increment from memory at the following ZE code time 

(ZE^ code time). 

The AX data output from the Al Data-Decode Gates is stored 

temporarily in the AX Temporary Store for use during the y, r 

computation times (D^ code times). This data consists of the 

inputted Az ternary bit for a dx input and a positive ternary 

"one" for a dt input. 

The AY data output from the Al Data-Decode Gates is 

applied as an input to the AY Accumulator. A positive Az 

ternary bit input is applied to the up-count input and a 

negative Az ternary bit input is applied to the down-count 

input. The total AY accumulation is then retained in the 

counter for use at the y, r computation time. 

The least-significant bit of y as extracted from memory 

at D^ time can exist in any one of four memory output y bits 

(bits 1 through 4). The AY accumulation must then be aligned 

for application to the Y Adder. This is performed in the Bit 

Align Logic-Decode Gates by use of the 2 least-significant 

bits in the integrator bit length data stored at L code time. 

The Y Adder performs parallel binary addition at each of 

the y, r computation times using the 4 bits of y data from 

memory and the Bit Align Logic outputs. The four bit sets of 

data are then added serially by use of storage of the most 
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significant carry bit for use at the next D time. The 

resultant y data is inserted into memory and also applied to 

the Y ± 1 Multiplier. 

The Y ± 1 Multiplier uses the àX Temporary Store data to 

transfer y directly to the R Adder for tx being a positive 

increment and transferring the 2's complement of y to the R 

Adder for Ax being a negative increment. 

The R Adder performs binary addition of the Y ± 1 Multi­

plier output and the r data from memory in the same way as 

performed in the Y Adder. The resultant r data is then 

inserted back into memory. 

The R Overflow Sensor detects and temporarily stores a 

Az overflow of the R Adder output data. This sensing is per­

formed by logic decoding of the states of the r sign bit and 

the r carry bit into the sign bit. A positive tz ternary bit 

is stored for positive overflow and a negative Az ternary bit 

is stored for negative overflow. This stored data is then 

inserted into memory at the Az insertion time (ZI code time). 

F. Memory Input-Output 

The memory input-output functions are shown in Figure 24. 

The memory-word drivers use the Memory-Address Selector 

outputs discussed in section III. B to drive the proper memory 

word line being addressed. 

The memory-sense-line outputs at word-drive time are 

amplified in the memory-sense amplifiers and inputted to set the 
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Figure 24. Memory input-output 
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Memory-Output Register. This data is then retained in the 

Memory Output Register until the initiation of the next -

memory-access cycle. The Memory Output Register data provides 

then the instruction data, y and r data, for use within the 

various sections of the incremental processor. 

The Memory Bit Grouping Logic selects the proper 2 bits 

of the 8 bits available from memory output to supply the Az 

ternary-bit output at ZE code time. The control data used to 

provide the proper selection is available within the 2 least-

significant bits retained in the IIZ storage register at ZS 

time. 

The Memory Input Selector selects the various data to be 

inserted into memory such as y and r data and including re­

inserting memory-output data to allow retention of the program. 

The basic integrator-timing codes are used to control the 

selection. 

The Memory Input Selector output is applied to the memory-

bit drivers.. These drivers in turn control the final state of 

stored data in the thin-magnetic-film plane word being 

addressed. 
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IV. SAMPLE PROBLEM SYNTHESIS 

The sample problem to be synthesized has been defined in 

basic terms in section III. A. The mappings of integrator 

interconnections for the sample problem are shown in Figures l8 

and 19. 

Scaling of the various integrators must now be done to 

specifically define the equation solution. This scaling as 

discussed in Mendelson (4) and Braun (15) consists of deter­

mining the physical scaling constants and each integrator bit 

length. The scaling is done by use of the relationship between 

differentials as given in Equations 6 and 7. 

In the following analysis, the iteration-rate constant 

will be referred to as iterations per second and the inte­

grator bit length will be referred to as n^ for integrator 

number m as defined in Figures I8 and I9. 

The pulse or increment rate input to the time scaler, 

integrator number 1, is given in Equation 28. 

With the initial value of the y register for the time 

scaler set to k, the incremental output of the time scaler is 

given in Equation 29. 

The incremental rate output of the time scaler is given 

by Equation 30. 

Ax 
(28) 

Az^ = 2""lk;Ax^ = 2"^1 k K^At (29) 
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:) J 

•^=2-"lkK^ (30) 

The Ay accumulation to generate y consists of accumulating 

the pulses as they are present at a given pulse rate at the y 

input. The accumulation then performs the time integration of 

the pulse rate input. 

Defining the time scaler output pulse rate as the 

incremental output rates and outputs of integrator number 2 and 

3 are given in Equations 31 through 34. 

^ = Kt 2-"2 Z3 (31) 

AZg = 2-^2 (32) 

-^ = -K^2-"3Z2 (33) 

Az^ = -K^ 2~"3 Zg At (34) 

By setting n^ equal to n^. Equations 31 through 34 

approximate those for sine and cosine as given in Equations 

35 through 38 respectively. 

AZg aCA sin (K^ 

Jt~ " At = Kg 2~"2 A cos (K^ 2"^2 t) (35) 

AZg = aCa sin (K^ 2'^2 t)] = 2"^2 a cos (K^ 2"^2 t)At (36) 

Az^ aCA COS (K^ 2"^2 t)] _ 
-ti = ït = -Kt 2' 2 A sin (K. t) (37) 

Az^ = a[A COS (K^ 2'"2 t)] = -K^ 2"^2 A sin (K^ 2"^2 t)At (38) 

The magnitude A is specified by the initial values of 
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the y registers for Integrator numbers 2 and 3. 

The angular frequency, cu, is specified as in Equation 39. 

" = 'S (39) 

The angular rotation per input time pulse is given by 

dividing the angular frequency as given in Equation 39 by 

as given in Equation 28. The resultant rotation per 

input time pulse, A0/Ax^, is given in Equation 40. 

(^0) 

The accumulation of the Ay input to integrator number 4 

approximates the time integral of the input incremental rate 

as given in Equation 4l. 

.t <i{7h) 
yif - 4 —dT (41) 

The digital-to-analog converter is scaled for a i 10 volt 

maximum output, whereby the most significant bit in the y data 

being outputted corresponds to plus or minus 5 volts, 

depending on sign. 

The parameters chosen for the sine/cosine cycling test 

are given in Table 10. 

The resultant fundamental iteration rate is approximately 

1.3 X 10 iterations per second and the sinusoidal angular 

frequency is 2.6 rad/sec. The resultant sine/cosine amplitude, 

7 A, is 2 and the outputted voltage amplitude peak from the 

converter Is 7.5 volts. 
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The parameters chosen for the sine/cosine rotation test 

are given in Table 11. Additionally, the two segments of the 

sinusoidal curve chosen to show the fine-grain structure start 

at 0 radians and 0.5 radians. The resultant angular rotation 

increments for the lx_, 4x and lOx sets of integrators are 

2"^^ and 2~^^ radians respectively. 

Table 10. Sine/cosine cycle test parameters 

Integrator 
Number 

Bit Length 
n 

y Register 
Variable 

y Initial 
Value 

Comments 

1-lx 15 ^ix 
214 

2-lx 8 A cos (ujt) 0.75 X 2^ 

3-lx 8 -A sin (cut) 0 

4-lx 8 A sin (out) 0 Output Ix 

l-4x 15 214 

2-4x 10 A cos (wt) 0.75 X 2^ 

3-4x 10 -A sin (tut) 0 

4- 4x 8 A sin (wt) 0 Output 4x 

1-lOx 15 ^lOx 0.8 X 2^^ 

2-lOx 11 A cos (ujt) 0.75 X 2^ 

3-lOx 11 -A sin (wt) 0 

4-lOx 8 A sin (wt) 0 Output lOx 
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Table 11. Sine/cosine rotation test parameters 

Integrator Bit Length y Register y Initial 
Number n Variable Value 

X 
1—

I 
1 1—

1 

15 X 
1—

1 

1 

2-lx 8 A GO'S ( UJt - -g) 0 

3-lx 8 -A sin S
 

e
t 1 

ro
i=

i 

0.75 X 28 

4-lx 11 klxt 0 

l-4x 15 1 

2-4X 10 A cos (wt - G) 0 

3-4x 10 -A sin (wt - 0.75 X 28 

4-4x 11 0 

1-lOx 15 ^ÏOx 1 

2-lOx 11 A cos 0 

3-lOx 11 -A sin ( Hit - *2 ) 0.75 X 28 

4-lOx 11 •^LOX' 0 



www.manaraa.com

r "7 . 
V I CL 

V. SAMPLE PROBLEM EXPERIMENTAL DATA 

The sample problem defined in section IV was programmed 

and run on the incremental processor. 

The sine/cosine cycling test as shov.n by the mapping in 

Figure l8 was programmed and run using the parameters in Table 

10, The resultant converter output was recorded using a San­

born Model 150 SB-2 4-channel recorder. The resultant recorded 

output is shown in Figure 24. 

The cycling test was performed by recording the first few 

cycles of the sinusoid, stopping the recorder for five minutes, 

and then continuing the recording. The resultant graph then 

indicates the sine generation over greater than 100 cycles of 

the function. 

The expected amplitudes of 7.5 volts and angular frequency 

of 2.6 radians per second are indicated in Figure 24 and the 

gross structure essentially repeats over many cycles. 

The sine/cosine rotation test as mapped in Figure 19 

was programmed and run using the parameters of Table 11. 

The incremental rotations were performed by repeatedly 

allowing computation to be performed until a time-scaler 

output increment is detected in integrator-4 y register; then 

stopping the computation to allow reading the y register 

contents of the cosine register. 

The resultant data is plotted as shown in Figure 25 for 

the sigment starting at 0 radians and in Figure 26 for the 
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Figure 24. Since/cosine cycling test 
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Figure 25. 0 radians segment incremental rotation 
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Figure 26. 0.5 radians segment incremental rotation 
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segment starting at 0.5 radians. 

The improvement in sinusoidal generation is clearly 

indicated over both segments of the curve using the higher 

iteration rates. 

The hardware used to implement the incremental processor 

consists for the most part of Collin's C-8400-series logic 

cards and rack hardware. 

The front view of the processor is shown in Figure 26 

which shows the control panel, the nine card rows holding 

54 cards each, and the power-supply front panel. 

The back view of the processor is shown in Figure 27. 

The point-to-point wiring between card plugs, the digital-to-

analog converter near the top of the rack and the shielding 

case holding the memory plane located directly behind the front 

panel are illustrated in this back view. 

Figure 28 shows the 128 word, 8 bit per word thin-

magnetic-film plane, its shielding case and the associated 

diode-transformer matrix located next to the memory plane. 

Two types of the Collins G-8400-series logic cards used 

in the incremental processor are shown in Figures 29 and 30. 

Figure 29 shows a KA-series logic inverter and Figure 30 

shows an RS-series set-reset flip-flop. 

The operating control panel for the equipment is shown 

in Figure 3I. The row of indicators at the top of the panel 

are used to display selected data within memory and directly 
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Figure 26. Processor front view 
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Figure 27. Processor back view 



www.manaraa.com

Figure 28. Thln-mn^netlc-fllm memory plane 
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Figure 29. Collins KA-series logic inverter 
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Figure 30. Collins RS-series set-reset flip-flop 
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Figure 31. Incremental processor control panel 
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below these Indicators are the push-button switches used to 

load data into memory. Below the indicators and insertion 

switches are the various data-selection, program-insertion, 

initialization and operating-control switches. 
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VI. CONCLUSIONS 

The investigation of a multiple iteration rate incremen­

tal processor reported in the preceding pages was concerned 

with the critical characteristics pertinent to such a proces­

sor. Specific characteristics which were considered useful to 

extend the application of incremental processing were presented 

as the following: a basic DDA-integrator functional operation; 

an easily determined stored program; minimal storage in the 

form of a magnetic array and multiple-iteration-rate operation 

for sets of the integrators. 

An incremental processor was developed, "built and tested 

' which incorporated the above characteristics. The results 

obtained in running test programs on the processor demonstrated 

the feasibility of design of such an equipment. Additionally, 

the results of the test programs illustrated the significant 

improvement in computation effected by use of multiple-

iteration rates. 

Several areas of application are presently being considered 

for use of such a processor. These include industrial process 

control, numerical-machine-tool control and data accumulation 

and reduction. 

An area of research which warrants future investigation 

is the development of a useable technique for prediction of 

propagation of errors within an incremental processor. This 

error analysis has been discussed in the literature such as 
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in Monroe (l6). Hills (17) and Nelson (I8). A continuation 

of this effort to supply a complete and concise technique 

for application to a complete physical problem is needed. 
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I X .  APPENDIX 

The detailed logic circuitry used to implement the 

various logic functions within the incremental processor are 

described in the following paragraphs. 

A preliminary discussion of the basic digital logic used 

is presented prior to specific function description.. 

The combinational logic equations synthesized within the 

.equipment use the AND, -OR and COMPLEMENT or NEGATE functions, ' 

These functions are used to implement the logic-select gates, 

the logic-decode gates, the code-generation circuitry and the 

binary adders. 

Set-reset flip-flops are used for the storage registers 

and these set-reset flip-flops are also used in conjunction 

with a two-phase clock to implement the sequential counters. 

The Collins Radio Co. C-8400-series inverter cards are 

used to implement the combinational-logic equations. The logic 

functions performed within the inverter cards is defined by 

use of the diagram in Figure 32. A corresponding typical 

logic expression for the inverter as shown in Figure 32 is 

given in Equation 42 where X is the output and A, B, C, D, E 

and F are the inputs. 

X = (A-B-C+D-E-Fj (42) 

These Inverter cards consist of the KA-series cards which 

incorporate one logic function as shown in Figure 32 per card 

and the KB-series cards which Incorporate two independent 
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Figure 32. Collins inverter logic function 
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AND circuit OR circuit 

Output 

Figure 33. AND and OR diode-resistor circuits 
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logic functions as shown in Figure 32 per card. 

The AND and OR functions are performed within the inverter 

cards by diode-resistor circuits as shown in Figure 33 and the 

inverter circuit consists of a Darlington-pair inverting switch 

circuit. 

The set-reset flip-flops consist of the Collins RS-series 

cards which use the same circuitry as the KB-inverter cards 

with an additional internal cross connection between the two 

inverter functions as indicated in Equations 43 and 44. 

The set input for the flip-flop as implemented in Equations 43 

and 44 is the logic variable B. The reset input is A. 

The counting function is performed by use of two RS flip-

flops for each counter stage and by use of a controlling two-

phase clock. 

The two-phase clock consists of the basic processor clock 

(denoted CLA) and a second clock signal (denoted CLB) which is 

the complement of CLA; i.e., CLA and CLB are alternately in 

logic state land in logic state 0 such that CLA is in logic 

state .1 while CLB is in logic state 0 and vice versa. 

The first of the two RS flip-flops for each stage 

(denoted XA) is utilized to store the present counter-stage 

state and the state of this flip-flop is changed when an input 

Y = (A + Y) (43) 

Internal cross connection 

(44) 
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is present. The second RS flip-flop (denoted XB) is used to 

store the past state of XA. The logic equations to implement 

these functions for the nth stage then are given in Equations 

45 through 48 where denotes the nth stage input. 

XA = (I -CLA-XB + XA ) ( 4 5 )  
—2 -^2 2_ ̂  RS flip-flop 

XÂ = + XAn)j (46) 

(47) 

n 

XB_ = (CLB-XA + XB ) 
n ^ n n' 

> 
XB^ = (CLB-XA^ + XB^) (48) 

RS flip-flop 

The remaining function necessary to complete the entire 

counting function is the determination of the presence of an 

input to a specific stage. For up-counting, an input exists 

when the next-lower-order stage exhibits a past state of logic 

1 and a present state of logic 0. The proper input for up-

counting, I^-up' then given in Equation 49. 

In-up =^n-l-^n-l (%) 

For down-counting, an input exists when the next-lower-order 

stage exhibits a past state of logic 0 and a present state of 

logic 1. The proper input for down-counting, I^-down' then 

given in Equation 50. 

^n-down ̂  ̂ n-l'^n-1 (^O) 

Substitution of Equation 49 or Equation 50 into Equations 45 

and 46 yield the complete logic functions for the nth stage 

of the computer. 
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Storage registers are implemented "by use of a single RS 

flip-flop per stage. The data is inputted to each stage under 

control of a command variable C^. The resultant flip-flop 

logic,expression for the nth stage is given in Equations 51 

and 52 where is the data to be inserted into the nth stage. 

(51) 
RS flip-flop 

(52) 

The logic-select gates consist of gates which transfer 

specific data to the output under control of a select-command 

variable as indicated in Equation 53. 

Z = V-SV+W-SW+X-SX+Y-SY ( 53 )  

The variables in Equation 53 are the output, Z; inputs V, W, 

X and Y; and the selection-control variables SV, SW, SX and 

SY. Equation 53 is physically Implemented by inverters 

connected to generate Equations 54 and 55 or alternately 56 ,  

2 = (V-SV+W-SW+X-SX+Y-SY) (54) 

Z = (Z) - " ( 55 )  

Z = (V.SV+W-SW+X-SX+Y-SY) ( 56 )  

The logic-decode gates are used to provide a logic 1 

output in presence of specific code combinations on the inputs 

to the decode gate. The logic expression is derived by 

inserting all of the terms in canonical form for the specific 

codes desired and then reducing the expression to a minimal 
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form which can be physically implemented with the logic 

inverters. 

An illustration of this is given where a 4-bit code 

pattern derived from a counter is used to generate an output 

on the count of 4^ 7, 10 and 13. This was used specifically 

in the processor to derive the multi-rate code output for 

4x rate. For the counter output denoted as Yg, Y_ and 

Yi^ with Y^ the least significant bit, the terms required in 

the logic expression are given in Equation 57. 

Z = Y^'Yj.Yg.Yi+Y^.Yg'Yg'Yi+Y^.ïj'Yg'Yi+Y^.Yj'^^.Yi 
I I  i t "  l l r y t t  t ! - ,  P i l l  I I - ,  O "  4 7 10 13 

The expression in Equation 57 can be reduced to the desired 

form as given in Equation 58 .  

Z = (Y2-yjj+Yi-y3-+ïi-Y2-V'2--3'V^l'-2-V-i'^'2-^4' 

(53) 

The code-generation circuitry is used to provide specific 

code combinations on parallel lines in the presence of specific 

inputs. The logic expression for the output on a specific bit 

line is derived in an analogous way to that for the logic-

decode gates; i.e., the desired state of each bit line is 

established by the specific inputs required. 

An illustration of, this is given where a 3-hit code 

pattern is generated with outputs Z^, Zg and Z^ where the 

binary codes on the Z lines are to be binary 3 for an X input 
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and binary 6 for a Y input. The resultant three lo^ic expres­

sions are given in Equations 59^ 60 and 6l, where is the 

least significant bit output. 

Zg = %.+ Y = (x.y) (59) 

Z_ = X + Y = (X-Y) . (oO) 

= % + y = (x-Y) (61) 
tt iign 

The binary adder is implemented by use of inverters to 

generate the sum, and carry, C . for each nth parallel bit. 

The nth bit sum and carry logic expressions for the addition of 

X and Y are given in Equations 62 and 63 respectively. 

'S3) 

The carry function can be reduced to simpler form and the 

resultant logic functions generated are given in Equations 64 

through 67. 
(64) 

Sn = {\) (65) 

(66) 

Cn = (C„) (67) 
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